2,134 research outputs found

    Alternative symplectic structures for SO(3,1) and SO(4) four-dimensional BF theories

    Full text link
    The most general action, quadratic in the B fields as well as in the curvature F, having SO(3,1) or SO(4) as the internal gauge group for a four-dimensional BF theory is presented and its symplectic geometry is displayed. It is shown that the space of solutions to the equations of motion for the BF theory can be endowed with symplectic structures alternative to the usual one. The analysis also includes topological terms and cosmological constant. The implications of this fact for gravity are briefly discussed.Comment: 13 pages, LaTeX file, no figure

    Tidal Disruption Flares: The Accretion Disk Phase

    Full text link
    The evolution of an accretion disk, formed as a consequence of the disruption of a star by a black hole, is followed by solving numerically the hydrodynamic equations. The present investigation aims to study the dependence of resulting light curves on dynamical and physical properties of such a transient disk during its existence. One of main results derived from our simulations is that black body fits of X-ray data tend to overestimate the true mean disk temperature. The temperature derived from black body fits should be identified with the color X-ray temperature rather than the average value derived from the true temperature distribution along the disk. The time interval between the beginning of the circularization of the bound debris and the beginning of the accretion process by the black hole is determined by the viscous timescale, which fixes also the raising part of the resulting light curve. The luminosity peak coincides with the beginning of matter accretion by the black hole and the late evolution of the light curve depends on the evolution of the debris fallback rate. Peak bolometric luminosities are in the range 10^45-10^46 erg s^-1 whereas peak luminosities in soft X-rays (0.2-2.0 keV) are typically one order of magnitude lower. The timescale derived from our preferred models for the flare luminosity to decay by two orders of magnitude is about 3-4 years. Predicted soft X-ray light curves were fitted to data on galaxies in which a variable X-ray emission, related to tidal events, was detected.Comment: 14 pages, 11 figures, Accepted for publication in Ap

    Hamilton-Jacobi theory for Hamiltonian systems with non-canonical symplectic structures

    Full text link
    A proposal for the Hamilton-Jacobi theory in the context of the covariant formulation of Hamiltonian systems is done. The current approach consists in applying Dirac's method to the corresponding action which implies the inclusion of second-class constraints in the formalism which are handled using the procedure of Rothe and Scholtz recently reported. The current method is applied to the nonrelativistic two-dimensional isotropic harmonic oscillator employing the various symplectic structures for this dynamical system recently reported.Comment: 17 pages, no figure

    Fermion mass gap in the loop representation of quantum gravity

    Get PDF
    An essential step towards the identification of a fermion mass generation mechanism at Planck scale is to analyse massive fermions in a given quantum gravity framework. In this letter the two mass terms entering the Hamiltonian constraint for the Einstein-Majorana system are studied in the loop representation of quantum gravity and fermions. One resembles a bare mass gap because it is not zero for states with zero (fermion) kinetic energy as opposite to the other that is interpreted as `dressing' the mass. The former contribution originates from (at least) triple intersections of the loop states acted on whilst the latter is traced back to every couple of coinciding end points, where fermions sit. Thus, fermion mass terms get encoded in the combinatorics of loop states. At last the possibility is discussed of relating fermion masses to the topology of space.Comment: 15 pages, Latex file, no figures. To be published in Classical and Quantum Gravit

    Linear constraints from generally covariant systems with quadratic constraints

    Full text link
    How to make compatible both boundary and gauge conditions for generally covariant theories using the gauge symmetry generated by first class constraints is studied. This approach employs finite gauge transformations in contrast with previous works which use infinitesimal ones. Two kinds of variational principles are taken into account; the first one features non-gauge-invariant actions whereas the second includes fully gauge-invariant actions. Furthermore, it is shown that it is possible to rewrite fully gauge-invariant actions featuring first class constraints quadratic in the momenta into first class constraints linear in the momenta (and homogeneous in some cases) due to the full gauge invariance of their actions. This shows that the gauge symmetry present in generally covariant theories having first class constraints quadratic in the momenta is not of a different kind with respect to the one of theories with first class constraints linear in the momenta if fully gauge-invariant actions are taken into account for the former theories. These ideas are implemented for the parametrized relativistic free particle, parametrized harmonic oscillator, and the SL(2,R) model.Comment: Latex file, revtex4, 18 pages, no figures. This version includes the corrections to many misprints of v1 and also the ones of the published version. The conceptual and technical parts of the paper are not altere

    A topological limit of gravity admitting an SU(2) connection formulation

    Full text link
    We study the Hamiltonian formulation of the generally covariant theory defined by the Lagrangian 4-form L=e_I e_J F^{IJ}(\omega) where e^I is a tetrad field and F^{IJ} is the curvature of a Lorentz connection \omega^{IJ}. This theory can be thought of as the limit of the Holst action for gravity for the Newton constant G goes to infinity and Immirzi parameter goes to zero, while keeping their product fixed. This theory has for a long time been conjectured to be topological. We prove this statement both in the covariant phase space formulation as well as in the standard Dirac formulation. In the time gauge, the unconstrained phase space of theory admits an SU(2) connection formulation which makes it isomorphic to the unconstrained phase space of gravity in terms of Ashtekar-Barbero variables. Among possible physical applications, we argue that the quantization of this topological theory might shed new light on the nature of the degrees of freedom that are responsible for black entropy in loop quantum gravity.Comment: Appendix added where moldels leading to boundary degrees of freedom are constructed. This version will appear in PRD

    Lorentz-covariant Hamiltonian analysis of BF gravity with the Immirzi parameter

    Full text link
    We perform the Lorentz-covariant Hamiltonian analysis of two Lagrangian action principles that describe general relativity as a constrained BF theory and that include the Immirzi parameter. The relation between these two Lagrangian actions has been already studied through a map among the fields involved. The main difference between these is the way the Immirzi parameter is included, since in one of them the Immirzi parameter is included explicitly in the BF terms, whereas in the other (the CMPR action) it is in the constraint on the B fields. In this work we continue the analysis of their relationship but at the Hamiltonian level. Particularly, we are interested in seeing how the above difference appears in the constraint structure of both action principles. We find that they both possess the same number of first-class and second-class constraints and satisfy a very similar (off-shell) Poisson-bracket algebra on account of the type of canonical variables employed. The two algebras can be transformed into each other by making a suitable change of variablesComment: LaTeX file, no figure
    • …
    corecore