222 research outputs found

    Quantum key distribution using non-classical photon number correlations in macroscopic light pulses

    Get PDF
    We propose a new scheme for quantum key distribution using macroscopic non-classical pulses of light having of the order 10^6 photons per pulse. Sub-shot-noise quantum correlation between the two polarization modes in a pulse gives the necessary sensitivity to eavesdropping that ensures the security of the protocol. We consider pulses of two-mode squeezed light generated by a type-II seeded parametric amplification process. We analyze the security of the system in terms of the effect of an eavesdropper on the bit error rates for the legitimate parties in the key distribution system. We also consider the effects of imperfect detectors and lossy channels on the security of the scheme.Comment: Modifications:added new eavesdropping attack, added more references Submitted to Physical Review A [email protected]

    Unraveling quantum dissipation in the frequency domain

    Full text link
    We present a quantum Monte Carlo method for solving the evolution of an open quantum system. In our approach, the density operator evolution is unraveled in the frequency domain. Significant advantages of this approach arise when the frequency of each dissipative event conveys information about the state of the system.Comment: 4 pages, 4 Postscript figures, uses RevTe

    Generation of phase-coherent states

    Get PDF
    An interaction scheme involving nonlinear χ(2)\chi^{(2)} media is suggested for the generation of phase-coherent states (PCS). The setup is based on parametric amplification of vacuum followed by up-conversion of the resulting twin-beam. The involved nonlinear interactions are studied by the exact numerical diagonalization. An experimentally achievable working regime to approximate PCS with high conversion rate is given, and the validity of parametric approximation is discussed.Comment: To appear in PRA -- More info at http://enterprise.pv.infn.it

    Qubit-photon interactions in a cavity: Measurement induced dephasing and number splitting

    Full text link
    We theoretically study measurement induced-dephasing of a superconducting qubit in the circuit QED architecture and compare the results to those obtained experimentally by Schuster {\it et al.}, [Phys. Rev. Lett. 94, 123602 (2005)]. Strong coupling of the qubit to the resonator leads to a significant ac-Stark shift of the qubit transition frequency. As a result, quantum fluctuations in the photon number populating the resonator cause dephasing of the qubit. We find good agreement between the predicted line shape of the qubit spectrum and the experimental results. Furthermore, in the strong dispersive limit, where the Stark shift per photon is large compared to the cavity decay rate and the qubit linewidth, we predict that the qubit spectrum will be split into multiple peaks, with each peak corresponding to a different number of photons in the cavity.Comment: 15 pages and 10 figures. Section IV revised. Author and references added. Version with high resolution figures available at available at http://www.physique.usherbrooke.ca/~ablais/publications.ht

    Cavity Assisted Nondestructive Laser Cooling of Atomic Qubits

    Full text link
    We analyze two configurations for laser cooling of neutral atoms whose internal states store qubits. The atoms are trapped in an optical lattice which is placed inside a cavity. We show that the coupling of the atoms to the damped cavity mode can provide a mechanism which leads to cooling of the motion without destroying the quantum information.Comment: 12 page

    Stochastic wave function approach to the calculation of multitime correlation functions of open quantum systems

    Full text link
    Within the framework of probability distributions on projective Hilbert space a scheme for the calculation of multitime correlation functions is developed. The starting point is the Markovian stochastic wave function description of an open quantum system coupled to an environment consisting of an ensemble of harmonic oscillators in arbitrary pure or mixed states. It is shown that matrix elements of reduced Heisenberg picture operators and general time-ordered correlation functions can be expressed by time-symmetric expectation values of extended operators in a doubled Hilbert space. This representation allows the construction of a stochastic process in the doubled Hilbert space which enables the determination of arbitrary matrix elements and correlation functions. The numerical efficiency of the resulting stochastic simulation algorithm is investigated and compared with an alternative Monte Carlo wave function method proposed first by Dalibard et al. [Phys. Rev. Lett. {\bf 68}, 580 (1992)]. By means of a standard example the suggested algorithm is shown to be more efficient numerically and to converge faster. Finally, some specific examples from quantum optics are presented in order to illustrate the proposed method, such as the coupling of a system to a vacuum, a squeezed vacuum within a finite solid angle, and a thermal mixture of coherent states.Comment: RevTex, 19 pages, 3 figures, uses multico

    Quantum Mechanics and Linearized Gravitational Waves

    Get PDF
    The interaction of classical gravitational waves (GW) with matter is studied within a quantum mechanical framework. The classical equations of motion in the long wave-length limit is quantized and a Schroedinger equation for the interaction of GW with matter is proposed. Due to its quadrapole nature, the GW interacts with matter by producing squeezed quantum states. The resultant hamiltonian is quite different from one would expect from general principles, however. The interaction of GW with the free particle, the harmonic oscillator and the hydrogen atom is then studied using this hamiltonian.Comment: 24 pages, written in REVTE

    Narrow Spectral Feature In Resonance Fluorescence With A Single Monochromatic Laser Field

    Get PDF
    We describe the resonance fluorescence spectrum of an atomic three-level system where two of the states are coupled by a single monochromatic laser field. The influence of the third energy level, which interacts with the two laser-coupled states only via radiative decays, is studied in detail. For a suitable choice of parameters, this system gives rise to a very narrow structure at the laser frequency in the fluorescence spectrum which is not present in the spectrum of a two-level atom. We find those parameter ranges by a numerical analysis and use the results to derive analytical expressions for the additional narrow peak. We also derive an exact expression for the peak intensity under the assumption that a random telegraph model is applicable to the system. This model and a simple spring model are then used to describe the physical origins of the additional peak. Using these results, we explain the connection between our system, a three-level system in V-configuration where both transitions are laser driven, and a related experiment which was recently reported.Comment: 14 pages, 15 figures, extension of the spring mode

    Effect of pure dephasing on the Jaynes-Cummings nonlinearities

    Get PDF
    We study the effect of pure dephasing on the strong-coupling between a quantum dot and the single mode of a microcavity in the nonlinear regime. We show that the photoluminescence spectrum of the system has a robust tendency to display triplet structures, instead of the expected Jaynes-Cummings pairs of doublets at the incommensurate frequencies ±(n±n−1)\pm(\sqrt{n}\pm\sqrt{n-1}) for integer nn. We show that current experimental works may already manifest signatures of single photon nonlinearities.Comment: v2: 4 Pages,3 figures. New figure 2 and some changes in the text. New author adde
    • 

    corecore