35 research outputs found

    Approximate computation of an eigenwave from measurements of its amplitudes at a given point

    Get PDF
    Under the assumption that the variables in the wave equation can be separated and its coefficients are periodic, we develop a classification of seismic eigenwaves and use it to answer some questions as to how to specify the type and basic parameters of a wave on the basis of measurements of amplitudes, whether there exist points of chaos, and how to predict them. © 2014 Pleiades Publishing, Ltd

    Statistical Significance of Precisely Repeated Intracellular Synaptic Patterns

    Get PDF
    Can neuronal networks produce patterns of activity with millisecond accuracy? It may seem unlikely, considering the probabilistic nature of synaptic transmission. However, some theories of brain function predict that such precision is feasible and can emerge from the non-linearity of the action potential generation in circuits of connected neurons. Several studies have presented evidence for and against this hypothesis. Our earlier work supported the precision hypothesis, based on results demonstrating that precise patterns of synaptic inputs could be found in intracellular recordings from neurons in brain slices and in vivo. To test this hypothesis, we devised a method for finding precise repeats of activity and compared repeats found in the data to those found in surrogate datasets made by shuffling the original data. Because more repeats were found in the original data than in the surrogate data sets, we argued that repeats were not due to chance occurrence. Mokeichev et al. (2007) challenged these conclusions, arguing that the generation of surrogate data was insufficiently rigorous. We have now reanalyzed our previous data with the methods introduced from Mokeichev et al. (2007). Our reanalysis reveals that repeats are statistically significant, thus supporting our earlier conclusions, while also supporting many conclusions that Mokeichev et al. (2007) drew from their recent in vivo recordings. Moreover, we also show that the conditions under which the membrane potential is recorded contributes significantly to the ability to detect repeats and may explain conflicting results. In conclusion, our reevaluation resolves the methodological contradictions between Ikegaya et al. (2004) and Mokeichev et al. (2007), but demonstrates the validity of our previous conclusion that spontaneous network activity is non-randomly organized

    On How Network Architecture Determines the Dominant Patterns of Spontaneous Neural Activity

    Get PDF
    In the absence of sensory stimulation, neocortical circuits display complex patterns of neural activity. These patterns are thought to reflect relevant properties of the network, including anatomical features like its modularity. It is also assumed that the synaptic connections of the network constrain the repertoire of emergent, spontaneous patterns. Although the link between network architecture and network activity has been extensively investigated in the last few years from different perspectives, our understanding of the relationship between the network connectivity and the structure of its spontaneous activity is still incomplete. Using a general mathematical model of neural dynamics we have studied the link between spontaneous activity and the underlying network architecture. In particular, here we show mathematically how the synaptic connections between neurons determine the repertoire of spatial patterns displayed in the spontaneous activity. To test our theoretical result, we have also used the model to simulate spontaneous activity of a neural network, whose architecture is inspired by the patchy organization of horizontal connections between cortical columns in the neocortex of primates and other mammals. The dominant spatial patterns of the spontaneous activity, calculated as its principal components, coincide remarkably well with those patterns predicted from the network connectivity using our theory. The equivalence between the concept of dominant pattern and the concept of attractor of the network dynamics is also demonstrated. This in turn suggests new ways of investigating encoding and storage capabilities of neural networks

    Principal component analysis of ensemble recordings reveals cell assemblies at high temporal resolution

    Get PDF
    Simultaneous recordings of many single neurons reveals unique insights into network processing spanning the timescale from single spikes to global oscillations. Neurons dynamically self-organize in subgroups of coactivated elements referred to as cell assemblies. Furthermore, these cell assemblies are reactivated, or replayed, preferentially during subsequent rest or sleep episodes, a proposed mechanism for memory trace consolidation. Here we employ Principal Component Analysis to isolate such patterns of neural activity. In addition, a measure is developed to quantify the similarity of instantaneous activity with a template pattern, and we derive theoretical distributions for the null hypothesis of no correlation between spike trains, allowing one to evaluate the statistical significance of instantaneous coactivations. Hence, when applied in an epoch different from the one where the patterns were identified, (e.g. subsequent sleep) this measure allows to identify times and intensities of reactivation. The distribution of this measure provides information on the dynamics of reactivation events: in sleep these occur as transients rather than as a continuous process

    Beyond Statistical Significance: Implications of Network Structure on Neuronal Activity

    Get PDF
    It is a common and good practice in experimental sciences to assess the statistical significance of measured outcomes. For this, the probability of obtaining the actual results is estimated under the assumption of an appropriately chosen null-hypothesis. If this probability is smaller than some threshold, the results are deemed statistically significant and the researchers are content in having revealed, within their own experimental domain, a “surprising” anomaly, possibly indicative of a hitherto hidden fragment of the underlying “ground-truth”. What is often neglected, though, is the actual importance of these experimental outcomes for understanding the system under investigation. We illustrate this point by giving practical and intuitive examples from the field of systems neuroscience. Specifically, we use the notion of embeddedness to quantify the impact of a neuron's activity on its downstream neurons in the network. We show that the network response strongly depends on the embeddedness of stimulated neurons and that embeddedness is a key determinant of the importance of neuronal activity on local and downstream processing. We extrapolate these results to other fields in which networks are used as a theoretical framework

    Structure of Spontaneous UP and DOWN Transitions Self-Organizing in a Cortical Network Model

    Get PDF
    Synaptic plasticity is considered to play a crucial role in the experience-dependent self-organization of local cortical networks. In the absence of sensory stimuli, cerebral cortex exhibits spontaneous membrane potential transitions between an UP and a DOWN state. To reveal how cortical networks develop spontaneous activity, or conversely, how spontaneous activity structures cortical networks, we analyze the self-organization of a recurrent network model of excitatory and inhibitory neurons, which is realistic enough to replicate UP–DOWN states, with spike-timing-dependent plasticity (STDP). The individual neurons in the self-organized network exhibit a variety of temporal patterns in the two-state transitions. In addition, the model develops a feed-forward network-like structure that produces a diverse repertoire of precise sequences of the UP state. Our model shows that the self-organized activity well resembles the spontaneous activity of cortical networks if STDP is accompanied by the pruning of weak synapses. These results suggest that the two-state membrane potential transitions play an active role in structuring local cortical circuits

    Neuronal Assembly Detection and Cell Membership Specification by Principal Component Analysis

    Get PDF
    In 1949, Donald Hebb postulated that assemblies of synchronously activated neurons are the elementary units of information processing in the brain. Despite being one of the most influential theories in neuroscience, Hebb's cell assembly hypothesis only started to become testable in the past two decades due to technological advances. However, while the technology for the simultaneous recording of large neuronal populations undergoes fast development, there is still a paucity of analytical methods that can properly detect and track the activity of cell assemblies. Here we describe a principal component-based method that is able to (1) identify all cell assemblies present in the neuronal population investigated, (2) determine the number of neurons involved in ensemble activity, (3) specify the precise identity of the neurons pertaining to each cell assembly, and (4) unravel the time course of the individual activity of multiple assemblies. Application of the method to multielectrode recordings of awake and behaving rats revealed that assemblies detected in the cerebral cortex and hippocampus typically contain overlapping neurons. The results indicate that the PCA method presented here is able to properly detect, track and specify neuronal assemblies, irrespective of overlapping membership

    Approximate computation of an eigenwave from measurements of its amplitudes at a given point

    No full text
    Under the assumption that the variables in the wave equation can be separated and its coefficients are periodic, we develop a classification of seismic eigenwaves and use it to answer some questions as to how to specify the type and basic parameters of a wave on the basis of measurements of amplitudes, whether there exist points of chaos, and how to predict them. © 2014 Pleiades Publishing, Ltd

    Approximate computation of an eigenwave from measurements of its amplitudes at a given point

    Get PDF
    Under the assumption that the variables in the wave equation can be separated and its coefficients are periodic, we develop a classification of seismic eigenwaves and use it to answer some questions as to how to specify the type and basic parameters of a wave on the basis of measurements of amplitudes, whether there exist points of chaos, and how to predict them. © 2014 Pleiades Publishing, Ltd
    corecore