106 research outputs found

    Optimal Industrial Load Control in Smart Grid

    Full text link

    Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity Markets

    Get PDF
    International audienceWe study the effect of Demand-Response (DR) in dynamic real-time electricity markets. We use a two-stage market model that takes into account the dynamical aspects of gen-eration, demand, and DR. We study the real-time market prices in two scenarios: in the former, consumers anticipate or delay their flexible loads in reaction to market prices; in the latter, the flexible loads are controlled by an independent aggregator. For both scenarios, we show that, when users are price-takers, any competitive equilibrium is efficient: the players' selfish responses to prices coincide with a socially optimal policy. Moreover, the price process is the same in all scenarios. For the numerical evaluation of the properties of the equilibrium, we develop a solution technique based on the Alternating Direction Method of Multipliers (ADMM) and trajectorial forecasts. The forecasts are computed us-ing wind generation data from the UK. We challenge the assumption that all players have full information. If the as-sumption is verified, then, as expected, the social welfare increases with the amount of DR available, since DR relaxes the ramping constraints of generation. However, if the day-ahead market cannot observe how elastic loads are affected by DR, a large quantity of DR can be detrimental and leads to a decrease in the welfare. Furthermore, the DR operator has an incentive to under-dimension the quantity of avail-able DR. Finally, we compare DR with an actual energy storage system. We find that storage has a faster response-time and thus performs better when only a limited amount is installed. However, storage suffers from charge-discharge in-efficiency: with DR, prices do concentrate on marginal cost (for storage, they do not) and provide a better welfare

    Adaptive access and rate control of CSMA for energy, rate and delay optimization

    Get PDF
    In this article, we present a cross-layer adaptive algorithm that dynamically maximizes the average utility function. A per stage utility function is defined for each link of a carrier sense multiple access-based wireless network as a weighted concave function of energy consumption, smoothed rate, and smoothed queue size. Hence, by selecting weights we can control the trade-off among them. Using dynamic programming, the utility function is maximized by dynamically adapting channel access, modulation, and coding according to the queue size and quality of the time-varying channel. We show that the optimal transmission policy has a threshold structure versus the channel state where the optimal decision is to transmit when the wireless channel state is better than a threshold. We also provide a queue management scheme where arrival rate is controlled based on the link state. Numerical results show characteristics of the proposed adaptation scheme and highlight the trade-off among energy consumption, smoothed data rate, and link delay.This study was supported in part by the Spanish Government, Ministerio de Ciencia e Innovación (MICINN), under projects COMONSENS (CSD2008-00010, CONSOLIDER-INGENIO 2010 program) and COSIMA (TEC2010-19545-C04-03), in part by Iran Telecommunication Research Center under contract 6947/500, and in part by Iran National Science Foundation under grant number 87041174. This study was completed while M. Khodaian was at CEIT and TECNUN (University of Navarra)

    Optimal RTP Based Power Scheduling for Residential Load in Smart Grid

    No full text
    corecore