623 research outputs found

    A preliminary look at techniques used to obtain airdata from flight at high angles of attack

    Get PDF
    Flight research at high angles of attack has posed new problems for airdata measurements. New sensors and techniques for measuring the standard airdata quantities of static pressure, dynamic pressure, angle of attack, and angle of sideslip were subsequently developed. The ongoing airdata research supporting NASA's F-18 high alpha research program is updated. Included are the techniques used and the preliminary results. The F-18 aircraft was flown with three research airdata systems: a standard airdata probe on the right wingtip, a self-aligning airdata probe on the left wingtip, and a flush airdata system on the nose cone. The primary research goal was to obtain steady-state calibrations for each airdata system up to an angle of attack of 50 deg. This goal was accomplished and preliminary accuracies of the three airdata systems were assessed and are presented. An effort to improve the fidelity of the airdata measurements during dynamic maneuvering is also discussed. This involved enhancement of the aerodynamic data with data obtained from linear accelerometers, rate gyros, and attitude gyros. Preliminary results of this technique are presented

    Flight and wind-tunnel calibrations of a flush airdata sensor at high angles of attack and sideslip and at supersonic Mach numbers

    Get PDF
    A nonintrusive airdata-sensing system was calibrated in flight and wind-tunnel experiments to an angle of attack of 70 deg and to angles of sideslip of +/- 15 deg. Flight-calibration data have also been obtained to Mach 1.2. The sensor, known as the flush airdata sensor, was installed on the nosecap of an F-18 aircraft for flight tests and on a full-scale F-18 forebody for wind-tunnel tests. Flight tests occurred at the NASA Dryden Flight Research Facility, Edwards, California, using the F-18 High Alpha Research Vehicle. Wind-tunnel tests were conducted in the 30- by 60-ft wind tunnel at the NASA LaRC, Hampton, Virginia. The sensor consisted of 23 flush-mounted pressure ports arranged in concentric circles and located within 1.75 in. of the tip of the nosecap. An overdetermined mathematical model was used to relate the pressure measurements to the local airdata quantities. The mathematical model was based on potential flow over a sphere and was empirically adjusted based on flight and wind-tunnel data. For quasi-steady maneuvering, the mathematical model worked well throughout the subsonic, transonic, and low supersonic flight regimes. The model also worked well throughout the angles-of-attack and -sideslip regions studied

    Preliminary results from an airdata enhancement algorithm with application to high-angle-of-attack flight

    Get PDF
    A technique was developed to improve the fidelity of airdata measurements during dynamic maneuvering. This technique is particularly useful for airdata measured during flight at high angular rates and high angles of attack. To support this research, flight tests using the F-18 high alpha research vehicle (HARV) were conducted at NASA Ames Research Center, Dryden Flight Research Facility. A Kalman filter was used to combine information from research airdata, linear accelerometers, angular rate gyros, and attitude gyros to determine better estimates of airdata quantities such as angle of attack, angle of sideslip, airspeed, and altitude. The state and observation equations used by the Kalman filter are briefly developed and it is shown how the state and measurement covariance matrices were determined from flight data. Flight data are used to show the results of the technique and these results are compared to an independent measurement source. This technique is applicable to both postflight and real-time processing of data

    A Base Drag Reduction Experiment on the X-33 Linear Aerospike SR-71 Experiment (LASRE) Flight Program

    Get PDF
    Drag reduction tests were conducted on the LASRE/X-33 flight experiment. The LASRE experiment is a flight test of a roughly 20% scale model of an X-33 forebody with a single aerospike engine at the rear. The experiment apparatus is mounted on top of an SR-71 aircraft. This paper suggests a method for reducing base drag by adding surface roughness along the forebody. Calculations show a potential for base drag reductions of 8-14%. Flight results corroborate the base drag reduction, with actual reductions of 15% in the high-subsonic flight regime. An unexpected result of this experiment is that drag benefits were shown to persist well into the supersonic flight regime. Flight results show no overall net drag reduction. Applied surface roughness causes forebody pressures to rise and offset base drag reductions. Apparently the grit displaced streamlines outward, causing forebody compression. Results of the LASRE drag experiments are inconclusive and more work is needed. Clearly, however, the forebody grit application works as a viable drag reduction tool

    Preliminary results from a subsonic high angle-of-attack flush airdata sensing (HI-FADS) system: Design, calibration, and flight test evaluation

    Get PDF
    A nonintrusive high angle-of-attack flush airdata sensing (HI-FADS) system was installed and flight-tested on the F-18 high alpha research flight vehicle. The system is a matrix of 25 pressure orifices in concentric circles on the nose of the vehicle. The orifices determine angles of attack and sideslip, Mach number, and pressure altitude. Pressure was transmitted from the orifices to an electronically scanned pressure module by lines of pneumatic tubing. The HI-FADS system was calibrated and demonstrated using dutch roll flight maneuvers covering large Mach, angle-of-attack, and sideslip ranges. Reference airdata for system calibration were generated by a minimum variance estimation technique blending measurements from two wingtip airdata booms with inertial velocities, aircraft angular rates and attitudes, precision radar tracking, and meteorological analyses. The pressure orifice calibration was based on identifying empirical adjustments to modified Newtonian flow on a hemisphere. Calibration results are presented. Flight test results used all 25 orifices or used a subset of 9 orifices. Under moderate maneuvering conditions, the HI-FADS system gave excellent results over the entire subsonic Mach number range up to 55 deg angle of attack. The internal pneumatic frequency response of the system is accurate to beyond 10 Hz. Aerodynamic lags in the aircraft flow field caused some performance degradation during heavy maneuvering

    Экспериментальная автоматизированная система гидрометеорологических измерений и обработки данных для береговых станций

    Get PDF
    Разработан действующий макет автоматизированной системы прибрежных гидрометеорологических измерений для морской сети Госгидромета Украины. В течение 2000 – 2004 гг. проведены испытания и опытная эксплуатация метеорологических (ветер, температура воздуха, атмосферное давление) и гидрологических (уровень, температура и соленость воды) измерительных блоков, установленных в стандартных условиях морской станции «Севастополь». Приводятся данные о структуре, основных технологических принципах автоматизированной системы и некоторые результаты квазинепрерывных метеорологических и гидрологических измерений.Developed is functioning model of automated system of coastal hydrometeorological measurements for the marine net of State Hydrometeorological Institution of Ukraine. In 2000 – 2004 the tests and experimental exploitation of meteorological (wind, atmospheric temperature, atmospheric pressure) and hydrological (water level, temperature and salinity) measuring blocks installed in standard conditions of marine station “Sevastopol” were held. Data on structure, general technological principles of the automated system and some results of quazi-continuous meteorological and hydrological measurements is presented

    Distribution and Excretion of TEGDMA in Guinea Pigs and Mice

    Get PDF
    The monomer triethyleneglycoldimethacrylate (TEGDMA) is used as a diluent in many resin-based dental materials. It was previously shown in vitro that TEGDMA was released into the adjacent biophase from such materials during the first days after placement. In this study, the uptake, distribution, and excretion of 14C-TEGDMA applied via gastric, intradermal, and intravenous administration at dose levels well above those encountered in dental care were examined in vivo in guinea pigs and mice as a test of the hypothesis that TEGDMA reaches cytotoxic levels in mammalian tissues. 14C-TEGDMA was taken up rapidly from the stomach and small intestine after gastric administration in both species and was widely distributed in the body following administration by each route. Most 14C was excreted within one day as 14 CO2. The peak equivalent TEGDMA levels in all mouse and guinea pig tissues examined were at least 1000-fold less than known toxic levels. The study therefore did not support the hypothesis

    Population pharmacokinetics of treosulfan in paediatric patients undergoing hematopoietic stem cell transplantation

    Get PDF
    Aims: Treosulfan is an alkylating agent increasingly used prior to haematopoietic stem cell transplantation. The aim of this study was to develop a population pharmacokinetic (PK) model of treosulfan in paediatric haematopoietic stem cell transplantation recipients and to explore the effect of potential covariates on treosulfan PK. Also, a limited sampling model (LSM) will be developed to accurately predict treosulfan exposure suitable for a therapeutic drug monitoring setting. Methods: In this multicentre study, 91 patients, receiving a total dose of 30, 36 or 42 g/m2 treosulfan, administered over 3 consecutive days, were enrolled. A population PK model was developed and demographic factors, as well as laboratory parameters, were included as potential covariates. In addition, a LSM was developed using data from 28 patients. Results: A 2-compartment model with first order elimination best described the data. Bodyweight with allometric scaling and maturation function were identified as significant predictors of treosulfan clearance. Treosulfan clearance reaches 90% of adult values at 4 postnatal years. A model-based dosing table is presented to target an exposure of 1650 mg*h/L (population median) for different weight and age groups. Samples taken at 1.5, 4 and 7 hours after start of infusion resulted in the best limited sampling strategy. Conclusions: This study provides a treosulfan population PK model in children and captures the developmental changes in clearance. A 3-point LSM allows for accurate and precise estimation of treosulfan exposure

    Dynamics of Intraband and Interband Auger Processes in Colloidal Core-Shell Quantum Dots.

    Get PDF
    Conventional colloidal quantum dots (QDs) suffer from rapid energy losses by nonradiative (Auger) processes, leading to sub-ns lifetimes in all excited states but the lowest-energy single exciton. Suppression of interband Auger decay, such as biexciton Auger recombination, has been achieved with the design of heterostructured core-shell QDs. Auger-like processes are also believed to be responsible for rapid intraband hot-electron cooling in QDs. However, the simultaneous effect of shell growth on interband Auger recombination and intraband hot-electron cooling has not been addressed. Here we investigate how the growth of a CdS shell affects these two relaxation processes in CdSe/CdS core-shell QDs. Using a combination of ultrafast pump-push-probe spectroscopy on the QD ensemble and analysis of the photon statistics from single QDs, we find that Auger losses in the biexciton state are suppressed with increasing shell thickness, while hot-electron cooling remains unaffected. Calculations conducted within an eight-band k·p model confirm the experimental dependence of the biexciton Auger decay on the shell thickness, and provide insights into the factors determining the cooling rate of hot carriers.This work is part of the research program of the ”Stichting voor Fundamenteel Onderzoek der Materie (FOM)”, which is financially supported by the ”Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)”. A.L.E. acknowledges the financial support of the Office of Naval Research (ONR) through the Naval Research Laboratory Basic Research Program.This is the author accepted manuscript. The final version is available from ACS via http://dx.doi.org/10.1021/acsnano.5b0449
    corecore