47 research outputs found

    Conformation-regulated mechanosensory control via titin domains in cardiac muscle

    Get PDF
    The giant filamentous protein titin is ideally positioned in the muscle sarcomere to sense mechanical stimuli and transform them into biochemical signals, such as those triggering cardiac hypertrophy. In this review, we ponder the evidence for signaling hotspots along the titin filament involved in mechanosensory control mechanisms. On the way, we distinguish between stress and strain as triggers of mechanical signaling events at the cardiac sarcomere. Whereas the Z-disk and M-band regions of titin may be prominently involved in sensing mechanical stress, signaling hotspots within the elastic I-band titin segment may respond primarily to mechanical strain. Common to both stress and strain sensor elements is their regulation by conformational changes in protein domains

    Unfolding of titin domains explains the viscoelastic behavior of skeletal myofibrils.

    Get PDF
    The elastic section of the giant muscle protein titin contains many immunoglobulin-like domains, which have been shown by single-molecule mechanical studies to unfold and refold upon stretch-release. Here we asked whether the mechanical properties of Ig domains and/or other titin regions could be responsible for the viscoelasticity of nonactivated skeletal-muscle sarcomeres, particularly for stress relaxation and force hysteresis. We show that isolated psoas myofibrils respond to a stretch-hold protocol with a characteristic force decay that becomes more pronounced following stretch to above 2.6-microm sarcomere length. The force decay was readily reproducible by a Monte Carlo simulation taking into account both the kinetics of Ig-domain unfolding and the worm-like-chain model of entropic elasticity used to describe titin's elastic behavior. The modeling indicated that the force decay is explainable by the unfolding of only a very small number of Ig domains per titin molecule. The simulation also predicted that a unique sequence in titin, the PEVK domain, may undergo minor structural changes during sarcomere extension. Myofibrils subjected to 1-Hz cycles of stretch-release exhibited distinct hysteresis that persisted during repetitive measurements. Quick stretch-release protocols, in which variable pauses were introduced after the release, revealed a two-exponential time course of hysteresis recovery. The rate constants of recovery compared well with the refolding rates of Ig-like or fibronectin-like domains measured by single-protein mechanical analysis. These findings suggest that in the sarcomere, titin's Ig-domain regions may act as entropic springs capable of adjusting their contour length in response to a stretch

    Titin-based contribution to shortening velocity of rabbit skeletal myofibrils

    No full text
    The shortening velocity of skeletal muscle fibres is determined principally by actomyosin cross-bridges. However, these contractile elements are in parallel with elastic elements, whose main structural basis is thought to be the titin filaments. If titin is stretched, it may contribute to sarcomere shortening simply because it can recoil ‘passively’. The titin-based contribution to shortening velocity (Vp) was quantified in single rabbit psoas myofibrils. Non-activated specimens were rapidly released from different initial sarcomere lengths (SLs) by various step amplitudes sufficient to buckle the myofibrils; Vp was calculated from the release amplitude and the time to slack reuptake. Vp increased progressively (upper limit of detection, ∼60 μm s−1 sarcomere−1) between 2.0 and 3.0 μm SL, albeit more steeply than passive tension. At very low passive tension levels already (< 1–2 mN mm−2), Vp could greatly exceed the unloaded shortening velocity measured in fully Ca2+-activated skinned rabbit psoas fibres. Degradation of titin in relaxed myofibrils by low doses of trypsin (5 min) drastically decreased Vp. In intact myofibrils, average Vp was faster, the smaller the release step applied. Also, Vp was much higher at 30 °C than at 15 °C (Q10: 2.0, 3.04 or 6.15, for release steps of 150, 250 or 450 nm sarcomere−1, respectively). Viscous forces opposing the shortening are likely to be involved in determining these effects. The results support the idea that the contractile system imposes a braking force onto the passive recoil of elastic structures. However, elastic recoil may aid active shortening during phases of high elastic energy utilization, i.e. immediately after the onset of contraction under low or zero load or during prolonged shortening from greater physiological SLs

    Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle

    Get PDF
    Kulke M, Neagoe C, Kolmerer B, et al. Kettin, a major source of myofibrillar stiffness in Drosophila indirect flight muscle. JOURNAL OF CELL BIOLOGY. 2001;154(5):1045-1058.Kettin is a high molecular mass protein of insect muscle that in the sarcomeres binds to actin and a-actinin. To investigate kettin's functional role, we combined immunolabeling experiments with mechanical and biochemical studies on indirect flight muscle (IFM) myofibrils of Drosophila melanogaster. Micrographs of stretched IFM sarcomeres labeled with kettin antibodies revealed staining of the Z-disc periphery. After extraction of the kettin-associated actin, the A-band edges were also stained. In contrast, the staining pattern of projectin, another IFM-1-band protein, was not altered by actin removal. Force measurements were performed on single IFM myofibrils to establish the passive length-tension relationship and record passive stiffness. Stiffness decreased within seconds during gelsolin incubation and to a similar degree upon kettin digestion with mu -calpain. Immunoblotting demonstrated the presence of kettin isoforms in normal Drosophila IFM myofibrils and in myofibrils from an actin-null mutant. Dotblot analysis revealed binding of COOH-terminal kettin domains to myosin. We conclude that kettin is attached not only to actin but also to the end of the thick filament. Kettin along with projectin may constitute the elastic filament system of insect IFM and determine the muscle's high stiffness necessary for stretch activation. Possibly, the two proteins modulate myofibrillar stiffness by expressing different size isoforms

    Association of the chaperone alphaB-crystallin with titin in heart muscle.

    No full text
    alphaB-crystallin, a major component of the vertebrate lens, is a chaperone belonging to the family of small heat shock proteins. These proteins form oligomers that bind to partially unfolded substrates and prevent denaturation. alphaB-crystallin in cardiac muscle binds to myofibrils under conditions of ischemia, and previous work has shown that the protein binds to titin in the I-band of cardiac fibers (Golenhofen, N., Arbeiter, A., Koob, R., and Drenckhahn, D. (2002) J. Mol. Cell. Cardiol. 34, 309-319). This part of titin extends as muscles are stretched and is made up of immunoglobulin-like modules and two extensible regions (N2B and PEVK) that have no well defined secondary structure. We have followed the position of alphaB-crystallin in stretched cardiac fibers relative to a known part of the titin sequence. alphaB-crystallin bound to a discrete region of the I-band that moved away from the Z-disc as sarcomeres were extended. In the physiological range of sarcomere lengths, alphaB-crystallin bound in the position of the N2B region of titin, but not to PEVK. In overstretched myofibrils, it was also in the Ig region between N2B and the Z-disc. Binding between alphaB-crystallin and N2B was confirmed using recombinant titin fragments. The Ig domains in an eight-domain fragment were stabilized by alphaB-crystallin; atomic force microscopy showed that higher stretching forces were needed to unfold the domains in the presence of the chaperone. Reversible association with alphaB-crystallin would protect I-band titin from stress liable to cause domain unfolding until conditions are favorable for refolding to the native state

    Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia

    No full text
    Infertility affects around 7% of men worldwide. Idiopathic non-obstructive azoospermia (NOA) is defined as the absence of spermatozoa in the ejaculate due to failed spermatogenesis. There is a high probability that NOA is caused by rare genetic defects. In this study, whole-exome sequencing (WES) was applied to two Estonian brothers diagnosed with NOA and Sertoli cell-only syndrome (SCOS). Compound heterozygous loss-of-function (LoF) variants in FANCM (Fanconi anemia complementation group M) were detected as the most likely cause for their condition. A rare maternally inherited frameshift variant p.Gln498Thrfs∗7 (rs761250416) and a previously undescribed splicing variant (c.4387-10A>G) derived from the father introduce a premature STOP codon leading to a truncated protein. FANCM exhibits enhanced testicular expression. In control subjects, immunohistochemical staining localized FANCM to the Sertoli and spermatogenic cells of seminiferous tubules with increasing intensity through germ cell development. This is consistent with its role in maintaining genomic stability in meiosis and mitosis. In the individual with SCOS carrying bi-allelic FANCM LoF variants, none or only faint expression was detected in the Sertoli cells. As further evidence, we detected two additional NOA-affected case subjects with independent FANCM homozygous nonsense variants, one from Estonia (p.Gln1701∗; rs147021911) and another from Portugal (p.Arg1931∗; rs144567652). The study convincingly demonstrates that bi-allelic recessive LoF variants in FANCM cause azoospermia. FANCM pathogenic variants have also been linked with doubled risk of familial breast and ovarian cancer, providing an example mechanism for the association between infertility and cancer risk, supported by published data on Fancm mutant mouse models.Laura Kasak, Margus Punab, Liina Nagirnaja, Marina Grigorova, Ave Minajeva, Alexandra M. Lopes ... et al
    corecore