97 research outputs found

    Advantages of using YBCO-Nanowire-YBCO heterostructures in the search for Majorana Fermions

    Full text link
    We propose an alternative platform to observe Majorana bound states in solid state systems. High critical temperature cuprate superconductors can induce superconductivity, by proximity effect, in quasi one dimensional nanowires with strong spin orbit coupling. They favor a wider and more robust range of conditions to stabilize Majorana fermions due to the large gap values, and offer novel functionalities in the design of the experiments determined by different dispersion for Andreev bound states as a function of the phase difference.Comment: 4 Pages, 3 figures, submission date 30-Apr-201

    Efficient quantum simulation of fermionic and bosonic models in trapped ions

    Get PDF
    We analyze the efficiency of quantum simulations of fermionic and bosonic models in trapped ions. In particular, we study the optimal time of entangling gates and the required number of total elementary gates. Furthermore, we exemplify these estimations in the light of quantum simulations of quantum field theories, condensed-matter physics, and quantum chemistry. Finally, we show that trapped-ion technologies are a suitable platform for implementing quantum simulations involving interacting fermionic and bosonic modes, paving the way for overcoming classical computers in the near future.Comment: 13 pages, 3 figures. Published in EPJ Quantum Technolog

    Quantum Simulator for Transport Phenomena in Fluid Flows

    Get PDF
    Transport phenomena still stand as one of the most challenging problems in computational physics. By exploiting the analogies between Dirac and lattice Boltzmann equations, we develop a quantum simulator based on pseudospin-boson quantum systems, which is suitable for encoding fluid dynamics transport phenomena within a lattice kinetic formalism. It is shown that both the streaming and collision processes of lattice Boltzmann dynamics can be implemented with controlled quantum operations, using a heralded quantum protocol to encode non-unitary scattering processes. The proposed simulator is amenable to realization in controlled quantum platforms, such as ion-trap quantum computers or circuit quantum electrodynamics processors.Comment: 8 pages, 3 figure

    Solidification of small para-H2 clusters at zero temperature

    Full text link
    We have determined the ground-state energies of para-H2_2 clusters at zero temperature using the diffusion Monte Carlo method. The liquid or solid character of each cluster is investigated by restricting the phase through the use of proper importance sampling. Our results show inhomogeneous crystallization of clusters, with alternating behavior between liquid and solid phases up to N=55. From there on, all clusters are solid. The ground-state energies in the range N=13--75 are established and the stable phase of each cluster is determined. In spite of the small differences observed between the energy of liquid and solid clusters, the corresponding density profiles are significantly different, feature that can help to solve ambiguities in the determination of the specific phase of H2_2 clusters.Comment: 17 pages, accepted for publication in J. Phys. Chem.

    Digital Quantum Simulation of the Holstein Model in Trapped Ions

    Full text link
    We propose the implementation of the Holstein model by means of digital methods in a linear chain of trapped ions. We show how the simulation fidelity scales with the generation of phononic excitations. We propose a decomposition and a stepwise trapped-ion implementation of the Holstein Hamiltonian. Via numerical simulations, we study how the protocol is affected by realistic gates. Finally, we show how measurements of the size of the simulated polaron can be performed.Comment: 5 pages + supplemental material, 3+3 figures. Accepted in Physical Review Letter

    Digital Quantum Rabi and Dicke Models in Superconducting Circuits

    Get PDF
    We propose the analog-digital quantum simulation of the quantum Rabi and Dicke models using circuit quantum electrodynamics (QED). We find that all physical regimes, in particular those which are impossible to realize in typical cavity QED setups, can be simulated via unitary decomposition into digital steps. Furthermore, we show the emergence of the Dirac equation dynamics from the quantum Rabi model when the mode frequency vanishes. Finally, we analyze the feasibility of this proposal under realistic superconducting circuit scenarios.Comment: 5 pages, 3 figures. Published in Scientific Report
    • …
    corecore