4,384 research outputs found
Suppression of spin-state transition in epitaxially strained LaCoO_{3}
Epitaxial thin films of LaCoO_{3} (E-LCO) exhibit ferromagnetic order with a
transition temperature T_c = 85 K, while polycrystalline thin LaCoO_{3} films
(P-LCO) remain paramagnetic. The temperature-dependent spin-state structure for
both E-LCO and P-LCO was studied by x-ray absorption spectroscopy at the Co
L_{2,3} and O K edges. Considerable spectral redistributions over temperature
are observed for P-LCO. The spectra for E-LCO, on the other hand, do not show
any significant changes for temperatures between 30 K and 450 K at both edges,
indicating that the spin state remains constant and that the epitaxial strain
inhibits any population of the low-spin (S = 0) state with decreasing
temperature. This observation identifies an important prerequisite for
ferromagnetism in E-LCO thin films.Comment: 5 pages, 5 figures, submitted to Physical Review
Parameter-free expression for superconducting Tc in cuprates
A parameter-free expression for the superconducting critical temperature of
layered cuprates is derived which allows us to express Tc in terms of
experimentally measured parameters. It yields Tc values observed in about 30
lanthanum, yttrium and mercury-based samples for different levels of doping.
This remarkable agreement with the experiment as well as the unusual critical
behaviour and the normal-state gap indicate that many cuprates are close to the
Bose-Einstein condensation regime.Comment: 5 pages, 2 figures. Will be published in Physical Review
Nonlinear effects in microwave photoconductivity of two-dimensional electron systems
We present a model for microwave photoconductivity of two-dimensional
electron systems in a magnetic field which describes the effects of strong
microwave and steady-state electric fields. Using this model, we derive an
analytical formula for the photoconductivity associated with photon- and
multi-photon-assisted impurity scattering as a function of the frequency and
power of microwave radiation. According to the developed model, the microwave
conductivity is an oscillatory function of the frequency of microwave radiation
and the cyclotron frequency which turns zero at the cyclotron resonance and its
harmonics. It exhibits maxima and minima (with absolute negative conductivity)
at the microwave frequencies somewhat different from the resonant frequencies.
The calculated power dependence of the amplitude of the microwave
photoconductivity oscillations exhibits pronounced sublinear behavior similar
to a logarithmic function. The height of the microwave photoconductivity maxima
and the depth of its minima are nonmonotonic functions of the electric field.
It is pointed to the possibility of a strong widening of the maxima and minima
due to a strong sensitivity of their parameters on the electric field and the
presence of strong long-range electric-field fluctuations. The obtained
dependences are consistent with the results of the experimental observations.Comment: 9 pages, 6 figures Labeling of the curves in Fig.3 correcte
Resonant X-ray Study on the Bi-Layered Perovskite Mn Oxide LaSr2Mn2O7
Charge and orbital ordering behaviors in the half doped bi-layered compound
LaSr2Mn2O7 have been studied by resonant and non-resonant X-ray scattering.
Three different order parameters, which correspond to the A-type
antiferromagnetic, a charge and an orbital ordered states, were observed by
measuring the magnetostriction and the superlattice peaks characterized by
wavevectors (1/2 1/2 0) and (1/4 1/4 0), respectively. The superlattice
reflections indicating the charge and orbital ordered states were observed
below 210 K. Both the intensities reach a maximum at 160 K on cooling and
become very weak below 100 K. The peak width of the charge ordered state agrees
with that of the orbital ordered state at all temperatures studied. These
results indicate that both the states originate from a single phase and that
the charge/orbital ordered islands with definite interfaces disperse in the
A-type antiferromagnetic phase. The dimensionality of the charge/orbital
ordered phase is discussed using this model.Comment: 9pages, 10 figure
Separately contacted edge states: A new spectroscopic tool for the investigation of the quantum Hall effect
Using an innovative combination of a quasi-Corbino sample geometry and the
cross-gate technique, we have developed a method that enables us to separately
contact single edge channels in the quantum Hall regime and investigate
equilibration among them. Performing 4-point resistance measurements, we
directly obtain information on the energetic and geometric structure of the
edge region and the equilibration-length for current transport across the
Landau- as well as the spin-gap. Based on an almost free choice in the number
of participating edge channels and their interaction-length a systematic
investigation of the parameter-space becomes possible.Comment: 8 pages, 7 figure
Angle-resolved photoemission study of untwinned PrBaCuO: undoped CuO plane and doped CuO chain
We have performed an angle-resolved photoemission study on untwinned
PrBaCuO, which has low resistivity but does not show
superconductivity. We have observed a dispersive feature with a band maximum
around (/2,/2), indicating that this band is derived from the undoped
CuO plane. We have observed another dispersive band exhibiting
one-dimensional character, which we attribute to signals from the doped CuO
chain. The overall band dispersion of the one-dimensional band agrees with the
prediction of model calculation with parameters relevant to cuprates
except that the intensity near the Fermi level is considerably suppressed in
the experiment.Comment: 6 pages, 10 figure
Relativistic MHD with Adaptive Mesh Refinement
This paper presents a new computer code to solve the general relativistic
magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh
refinement (AMR). The fluid equations are solved using a finite difference
Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger.
Hyperbolic divergence cleaning is used to control the
constraint. We present results from three flat space tests, and examine the
accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel
solution. The AMR simulations substantially improve performance while
reproducing the resolution equivalent unigrid simulation results. Finally, we
discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics
Detecting redshifted 21-cm emission from neutral hydrogen in the early Universe promises to give direct constraints on the epoch of reionization (EoR). It will, though, be very challenging to extract the cosmological signal (CS) from foregrounds and noise which are orders of magnitude larger. Fortunately, the signal has some characteristics which differentiate it from the foregrounds and noise, and we suggest that using the correct statistics may tease out signatures of reionization. We generate mock data cubes simulating the output of the Low Frequency Array (LOFAR) EoR experiment. These cubes combine realistic models for Galactic and extragalactic foregrounds and the noise with three different simulations of the CS. We fit out the foregrounds, which are smooth in the frequency direction, to produce residual images in each frequency band. We denoise these images and study the skewness of the one-point distribution in the images as a function of frequency. We find that, under sufficiently optimistic assumptions, we can recover the main features of the redshift evolution of the skewness in the 21-cm signal. We argue that some of these features ¿ such as a dip at the onset of reionization, followed by a rise towards its later stages ¿ may be generic, and give us a promising route to a statistical detection of reionization
Correlation between the Josephson coupling energy and the condensation energy in bilayer cuprate superconductors
We review some previous studies concerning the intra-bilayer Josephson
plasmons and present new ellipsometric data of the c-axis infrared response of
almost optimally doped Bi_{2}Sr_{2}CaCu_{2}O_{8}. The c-axis conductivity of
this compound exhibits the same kind of anomalies as that of underdoped
YBa_{2}Cu_{3}O_{7-delta}. We analyze these anomalies in detail and show that
they can be explained within a model involving the intra-bilayer Josephson
effect and variations of the electric field inside the unit cell. The Josephson
coupling energies of different bilayer compounds obtained from the optical data
are compared with the condensation energies and it is shown that there is a
reasonable agreement between the values of the two quantities. We argue that
the Josephson coupling energy, as determined by the frequency of the
intra-bilayer Josephson plasmon, represents a reasonable estimate of the change
of the effective c-axis kinetic energy upon entering the superconducting state.
It is further explained that this is not the case for the estimate based on the
use of the simplest ``tight-binding'' sum rule. We discuss possible
interpretations of the remarkable agreement between the Josephson coupling
energies and the condensation energies. The most plausible interpretation is
that the interlayer tunneling of the Cooper pairs provides the dominant
contribution to the condensation energy of the bilayer compounds; in other
words that the condensation energy of these compounds can be accounted for by
the interlayer tunneling theory. We suggest an extension of this theory, which
may also explain the high values of T_{c} in the single layer compounds
Tl_{2}Ba_{2}CuO_{6} and HgBa_{2}CuO_{4}, and we make several experimentally
verifiable predictions.Comment: 16 pages (including Tables) and 7 figures; accepted for publication
in Physical Review
Topological properties of superconducting junctions
Motivated by recent developments in the field of one-dimensional topological
superconductors, we investigate the topological properties of s-matrix of
generic superconducting junctions where dimension should not play any role. We
argue that for a finite junction the s-matrix is always topologically trivial.
We resolve an apparent contradiction with the previous results by taking into
account the low-energy resonant poles of s-matrix. Thus no common topological
transition occur in a finite junction. We reveal a transition of a different
kind that concerns the configuration of the resonant poles
- …
