212 research outputs found

    Fermion mass gap in the loop representation of quantum gravity

    Get PDF
    An essential step towards the identification of a fermion mass generation mechanism at Planck scale is to analyse massive fermions in a given quantum gravity framework. In this letter the two mass terms entering the Hamiltonian constraint for the Einstein-Majorana system are studied in the loop representation of quantum gravity and fermions. One resembles a bare mass gap because it is not zero for states with zero (fermion) kinetic energy as opposite to the other that is interpreted as `dressing' the mass. The former contribution originates from (at least) triple intersections of the loop states acted on whilst the latter is traced back to every couple of coinciding end points, where fermions sit. Thus, fermion mass terms get encoded in the combinatorics of loop states. At last the possibility is discussed of relating fermion masses to the topology of space.Comment: 15 pages, Latex file, no figures. To be published in Classical and Quantum Gravit

    Covariant canonical formalism for four-dimensional BF theory

    Full text link
    The covariant canonical formalism for four-dimensional BF theory is performed. The aim of the paper is to understand in the context of the covariant canonical formalism both the reducibility that some first class constraints have in Dirac's canonical analysis and also the role that topological terms play. The analysis includes also the cases when both a cosmological constant and the second Chern character are added to the pure BF action. In the case of the BF theory supplemented with the second Chern character, the presymplectic 3-form is different to the one of the BF theory in spite of the fact both theories have the same equations of motion while on the space of solutions they both agree to each other. Moreover, the analysis of the degenerate directions shows some differences between diffeomorphisms and internal gauge symmetries.Comment: Latex file, 22 pages (due to the macro). Revised version to match published versio

    Hamilton-Jacobi theory for Hamiltonian systems with non-canonical symplectic structures

    Full text link
    A proposal for the Hamilton-Jacobi theory in the context of the covariant formulation of Hamiltonian systems is done. The current approach consists in applying Dirac's method to the corresponding action which implies the inclusion of second-class constraints in the formalism which are handled using the procedure of Rothe and Scholtz recently reported. The current method is applied to the nonrelativistic two-dimensional isotropic harmonic oscillator employing the various symplectic structures for this dynamical system recently reported.Comment: 17 pages, no figure

    The boundary field theory induced by the Chern-Simons theory

    Full text link
    The Chern-Simons theory defined on a 3-dimensional manifold with boundary is written as a two-dimensional field theory defined only on the boundary of the three-manifold. The resulting theory is, essentially, the pullback to the boundary of a symplectic structure defined on the space of auxiliary fields in terms of which the connection one-form of the Chern-Simons theory is expressed when solving the condition of vanishing curvature. The counting of the physical degrees of freedom living in the boundary associated to the model is performed using Dirac's canonical analysis for the particular case of the gauge group SU(2). The result is that the specific model has one physical local degree of freedom. Moreover, the role of the boundary conditions on the original Chern- Simons theory is displayed and clarified in an example, which shows how the gauge content as well as the structure of the constraints of the induced boundary theory is affected.Comment: 10 page

    A topological limit of gravity admitting an SU(2) connection formulation

    Full text link
    We study the Hamiltonian formulation of the generally covariant theory defined by the Lagrangian 4-form L=e_I e_J F^{IJ}(\omega) where e^I is a tetrad field and F^{IJ} is the curvature of a Lorentz connection \omega^{IJ}. This theory can be thought of as the limit of the Holst action for gravity for the Newton constant G goes to infinity and Immirzi parameter goes to zero, while keeping their product fixed. This theory has for a long time been conjectured to be topological. We prove this statement both in the covariant phase space formulation as well as in the standard Dirac formulation. In the time gauge, the unconstrained phase space of theory admits an SU(2) connection formulation which makes it isomorphic to the unconstrained phase space of gravity in terms of Ashtekar-Barbero variables. Among possible physical applications, we argue that the quantization of this topological theory might shed new light on the nature of the degrees of freedom that are responsible for black entropy in loop quantum gravity.Comment: Appendix added where moldels leading to boundary degrees of freedom are constructed. This version will appear in PRD

    Exact inflationary solutions

    Get PDF
    We present a new class of exact inflationary solutions for the evolution of a universe with spatial curvature, filled with a perfect fluid, a scalar field with potential V±(ϕ)=λ(ϕ2±δ2)2V_{\pm}(\phi)=\lambda(\phi^2\pm\delta^2)^2 and a cosmological constant Λ\Lambda. With the V+(ϕ)V_+(\phi) potential and a negative cosmological constant, the scale factor experiments a graceful exit. We give a brief discussion about the physical meaning of the solutions.Comment: 10 pages, revtex file, 6 figures included with epsf. To be published in IJMP-

    Linear constraints from generally covariant systems with quadratic constraints

    Full text link
    How to make compatible both boundary and gauge conditions for generally covariant theories using the gauge symmetry generated by first class constraints is studied. This approach employs finite gauge transformations in contrast with previous works which use infinitesimal ones. Two kinds of variational principles are taken into account; the first one features non-gauge-invariant actions whereas the second includes fully gauge-invariant actions. Furthermore, it is shown that it is possible to rewrite fully gauge-invariant actions featuring first class constraints quadratic in the momenta into first class constraints linear in the momenta (and homogeneous in some cases) due to the full gauge invariance of their actions. This shows that the gauge symmetry present in generally covariant theories having first class constraints quadratic in the momenta is not of a different kind with respect to the one of theories with first class constraints linear in the momenta if fully gauge-invariant actions are taken into account for the former theories. These ideas are implemented for the parametrized relativistic free particle, parametrized harmonic oscillator, and the SL(2,R) model.Comment: Latex file, revtex4, 18 pages, no figures. This version includes the corrections to many misprints of v1 and also the ones of the published version. The conceptual and technical parts of the paper are not altere

    Relational evolution of the degrees of freedom of generally covariant quantum theories

    Get PDF
    We study the classical and quantum dynamics of generally covariant theories with vanishing a Hamiltonian and with a finite number of degrees of freedom. In particular, the geometric meaning of the full solution of the relational evolution of the degrees of freedom is displayed, which means the determination of the total number of evolving constants of motion required. Also a method to find evolving constants is proposed. The generalized Heinsenberg picture needs M time variables, as opposed to the Heisenberg picture of standard quantum mechanics where one time variable t is enough. As an application, we study the parameterized harmonic oscillator and the SL(2,R) model with one physical degree of freedom that mimics the constraint structure of general relativity where a Schrodinger equation emerges in its quantum dynamics.Comment: 25 pages, no figures, Latex file. Revised versio

    Topological field theories in n-dimensional spacetimes and Cartan's equations

    Full text link
    Action principles of the BF type for diffeomorphism invariant topological field theories living in n-dimensional spacetime manifolds are presented. Their construction is inspired by Cuesta and Montesinos' recent paper where Cartan's first and second structure equations together with first and second Bianchi identities are treated as the equations of motion for a field theory. In opposition to that paper, the current approach involves also auxiliary fields and holds for arbitrary n-dimensional spacetimes. Dirac's canonical analysis for the actions is detailedly carried out in the generic case and it is shown that these action principles define topological field theories, as mentioned. The current formalism is a generic framework to construct geometric theories with local degrees of freedom by introducing additional constraints on the various fields involved that destroy the topological character of the original theory. The latter idea is implemented in two-dimensional spacetimes where gravity coupled to matter fields is constructed out, which has indeed local excitations.Comment: LaTeX file, no figure
    corecore