964 research outputs found
The high mass end of the stellar mass function: Dependence on stellar population models and agreement between fits to the light profile
We quantify the systematic effects on the stellar mass function which arise
from assumptions about the stellar population, as well as how one fits the
light profiles of the most luminous galaxies at z ~ 0.1. When comparing results
from the literature, we are careful to separate out these effects. Our analysis
shows that while systematics in the estimated comoving number density which
arise from different treatments of the stellar population remain of order < 0.5
dex, systematics in photometry are now about 0.1 dex, despite recent claims in
the literature. Compared to these more recent analyses, previous work based on
Sloan Digital Sky Survey (SDSS) pipeline photometry leads to underestimates of
rho_*(> M_*) by factors of 3-10 in the mass range 10^11 - 10^11.6 M_Sun, but up
to a factor of 100 at higher stellar masses. This impacts studies which match
massive galaxies to dark matter halos. Although systematics which arise from
different treatments of the stellar population remain of order < 0.5 dex, our
finding that systematics in photometry now amount to only about 0.1 dex in the
stellar mass density is a significant improvement with respect to a decade ago.
Our results highlight the importance of using the same stellar population and
photometric models whenever low and high redshift samples are compared.Comment: 18 pages, 17 figures, accepted for publication in MNRAS. The PyMorph
luminosities and stellar masses are available at
https://www.physics.upenn.edu/~ameert/SDSS_PhotDec
Comparing PyMorph and SDSS photometry. II. The differences are more than semantics and are not dominated by intracluster light
The Sloan Digital Sky Survey pipeline photometry underestimates the
brightnesses of the most luminous galaxies. This is mainly because (i) the SDSS
overestimates the sky background and (ii) single or two-component Sersic-based
models better fit the surface brightness profile of galaxies, especially at
high luminosities, than does the de Vaucouleurs model used by the SDSS
pipeline. We use the PyMorph photometric reductions to isolate effect (ii) and
show that it is the same in the full sample as in small group environments, and
for satellites in the most massive clusters as well. None of these are expected
to be significantly affected by intracluster light (ICL). We only see an
additional effect for centrals in the most massive halos, but we argue that
even this is not dominated by ICL. Hence, for the vast majority of galaxies,
the differences between PyMorph and SDSS pipeline photometry cannot be ascribed
to the semantics of whether or not one includes the ICL when describing the
stellar mass of massive galaxies. Rather, they likely reflect differences in
star formation or assembly histories. Failure to account for the SDSS
underestimate has significantly biased most previous estimates of the SDSS
luminosity and stellar mass functions, and therefore Halo Model estimates of
the z ~ 0.1 relation between the mass of a halo and that of the galaxy at its
center. We also show that when one studies correlations, at fixed group mass,
with a quantity which was not used to define the groups, then selection effects
appear. We show why such effects arise, and should not be mistaken for physical
effects.Comment: 15 pages, 17 figures, accepted for publication in MNRAS. The PyMorph
luminosities and stellar masses are available at
https://www.physics.upenn.edu/~ameert/SDSS_PhotDec
Effect of cation vacancies on the crystal structure and luminescent properties of Ca0.85-1.5xGdxEu0.1□0.05+0.5xWO4(0 <= x <= 0.567) scheelite-based red phosphors
Spurious Shear in Weak Lensing with LSST
The complete 10-year survey from the Large Synoptic Survey Telescope (LSST)
will image 20,000 square degrees of sky in six filter bands every few
nights, bringing the final survey depth to , with over 4 billion
well measured galaxies. To take full advantage of this unprecedented
statistical power, the systematic errors associated with weak lensing
measurements need to be controlled to a level similar to the statistical
errors.
This work is the first attempt to quantitatively estimate the absolute level
and statistical properties of the systematic errors on weak lensing shear
measurements due to the most important physical effects in the LSST system via
high fidelity ray-tracing simulations. We identify and isolate the different
sources of algorithm-independent, \textit{additive} systematic errors on shear
measurements for LSST and predict their impact on the final cosmic shear
measurements using conventional weak lensing analysis techniques. We find that
the main source of the errors comes from an inability to adequately
characterise the atmospheric point spread function (PSF) due to its high
frequency spatial variation on angular scales smaller than in the
single short exposures, which propagates into a spurious shear correlation
function at the -- level on these scales. With the large
multi-epoch dataset that will be acquired by LSST, the stochastic errors
average out, bringing the final spurious shear correlation function to a level
very close to the statistical errors. Our results imply that the cosmological
constraints from LSST will not be severely limited by these
algorithm-independent, additive systematic effects.Comment: 22 pages, 12 figures, accepted by MNRA
An EORTC Phase II study of caspofungin as first-line therapy of invasive aspergillosis in haematological patients
Objectives Caspofungin was evaluated as first-line monotherapy of invasive aspergillosis (IA) in patients with haematological malignancies and undergoing autologous transplants. Methods Adults with proven or probable IA, defined strictly according to EORTC-MSG criteria, were eligible. Those with possible IA were enrolled, but were not evaluable for efficacy unless upgraded to proven/probable disease within 7 days of registration based on investigations performed within 48 h after enrolment. Caspofungin dosage was 70 mg (day 1) followed by 50 mg/day. The primary endpoint was the proportion of patients with complete or partial response at the end of caspofungin therapy in the modified intention to treat (MITT) group; secondary endpoints were response and survival at day 84 and safety. Results In the MITT group (n = 61), 75% of patients had cancer not in remission (relapsing or refractory), 85% were neutropenic at enrolment and 49% had a Karnofsky score of ≤50. At end of treatment, 1 and 19 patients had complete and partial response, respectively [success rate 33% (20/61)], 9 (15%) achieved stabilization and 31 (51%) had disease progression. One patient was not evaluable. The 6 and 12 week survival rates were 66% (40/61) and 53% (32/60), respectively. Baseline characteristics associated with survival at day 84 were an underlying disease in remission (not relapsing or refractory) and Karnofsky score. Recovery from neutropenia at the end of treatment was also significantly associated with survival. No serious drug-related adverse events or discontinuations due to drug-related adverse events were observed. Conclusions Caspofungin provided an observed response rate compatible with the null hypothesis of a true response rate of ≤35%. Underlying disease-related factors had a major impact on result
- …
