36 research outputs found

    Using Multi-Objective Optimization To Maximize Multiple Benefits For Sustainable Drainage Design

    Full text link
    For many years, drainage design was mainly about providing sufficient network capacity. This traditional approach had been successful with the aid of computer software and technical guidance. However, the drainage design criteria had been evolving due to rapid population growth, urbanisation, climate change and increasing sustainability awareness. Sustainable drainage systems that bring benefits in addition to water management have been recommended as better alternatives to conventional pipes and storages. Although the concepts and good practice guidance had already been communicated to decision makers and public for years, network capacity still remains a key design focus in many circumstances while the additional benefits are generally considered secondary only. Yet, the picture is changing. The industry begins to realise that delivering multiple benefits should be given the top priority while the drainage service can be considered a secondary benefit instead. The shift in focus means the industry has to adapt to new design challenges. New guidance and computer software are needed to assist decision makers. For this purpose, we developed a new decision support system. The system consists of two main components – a multi-criteria evaluation framework for drainage systems and a multi-objective optimisation tool. Users can systematically quantify the performance, life-cycle costs and benefits of different drainage systems using the evaluation framework. The optimisation tool can assist users to determine combinations of design parameters such as the sizes, order and type of drainage components that maximise multiple benefits. In this paper, we will focus on the optimisation component of the decision support framework. The optimisation problem formation, parameters and general configuration will be discussed. We will also look at the sensitivity of individual variables and the benchmark results obtained using common multi-objective optimisation algorithms. The work described here is the output of an EngD project funded by EPSRC and XP Solutions

    Evaluating And Optimizing Sustainable Drainage Design To Maximize Multiple Benefits: Case Studies In China

    Full text link
    In the past, the focus of drainage design was on sizing pipes and storages in order to provide sufficient network capacity. This traditional approach, together with computer software and technical guidance, had been successful for many years. However, due to rapid population growth and urbanisation, the requirements of a “good” drainage design have also changed significantly. In addition to water management, other aspects such as environmental impacts, amenity values and carbon footprint have to be considered during the design process. Going forward, we need to address the key sustainability issues carefully and practically. The key challenge of moving from simple objectives (e.g. capacity and costs) to complicated objectives (e.g. capacity, flood risk, environment, amenity etc) is the difficulty to strike a balance between various objectives and to justify potential benefits and compromises. In order to assist decision makers, we developed a new decision support system for drainage design. The system consists of two main components – a multi-criteria evaluation framework for drainage systems and a multi-objective optimisation tool. The evaluation framework is used for the quantification of performance, life-cycle costs and benefits of different drainage systems. The optimisation tool can search for feasible combinations of design parameters such as the sizes, order and type of drainage components that maximise multiple benefits. In this paper, we will discuss real-world application of the decision support system. A number of case studies have been developed based on recent drainage projects in China. We will use the case studies to illustrate how the evaluation framework highlights and compares the pros and cons of various design options. We will also discuss how the design parameters can be optimised based on the preferences of decision makers. The work described here is the output of an EngD project funded by EPSRC and XP Solutions

    Resonance as the Mechanism of Daytime Periodic Breathing in Patients with Heart Failure

    Get PDF
    Rationale: In patients with chronic heart failure, daytime oscillatory breathing at rest is associated with a high risk of mortality. Experimental evidence, including exaggerated ventilatory responses to CO2 and prolonged circulation time, implicates the ventilatory control system and suggests feedback instability (loop gain > 1) is responsible. However, daytime oscillatory patterns often appear remarkably irregular versus classic instability (Cheyne-Stokes respiration), suggesting our mechanistic understanding is limited. Objectives: We propose that daytime ventilatory oscillations generally result from a chemoreflex resonance, in which spontaneous biological variations in ventilatory drive repeatedly induce temporary and irregular ringing effects. Importantly, the ease with which spontaneous biological variations induce irregular oscillations (resonance “strength”) rises profoundly as loop gain rises toward 1. We tested this hypothesis through a comparison of mathematical predictions against actual measurements in patients with heart failure and healthy control subjects. Methods: In 25 patients with chronic heart failure and 25 control subjects, we examined spontaneous oscillations in ventilation and separately quantified loop gain using dynamic inspired CO2 stimulation. Measurements and Main Results: Resonance was detected in 24 of 25 patients with heart failure and 18 of 25 control subjects. With increased loop gain—consequent to increased chemosensitivity and delay—the strength of spontaneous oscillations increased precipitously as predicted (r = 0.88), yielding larger (r = 0.78) and more regular (interpeak interval SD, r = −0.68) oscillations (P < 0.001 for all, both groups combined). Conclusions: Our study elucidates the mechanism underlying daytime ventilatory oscillations in heart failure and provides a means to measure and interpret these oscillations to reveal the underlying chemoreflex hypersensitivity and reduced stability that foretells mortality in this population

    Novel cardiac pacemaker-based human model of periodic breathing to develop real-time, pre-emptive technology for carbon dioxide stabilisation

    Get PDF
    Background: Constant flow and concentration CO2 has previously been efficacious in attenuating ventilatory oscillations in periodic breathing (PB) where oscillations in CO2 drive ventilatory oscillations. However, it has the undesirable effect of increasing end-tidal CO2, and ventilation. We tested, in a model of PB, a dynamic CO2 therapy that aims to attenuate pacemaker-induced ventilatory oscillations while minimising CO2 dose. / Methods: First, pacemakers were manipulated in 12 pacemaker recipients, 6 with heart failure (ejection fraction (EF)=23.7±7.3%) and 6 without heart failure, to experimentally induce PB. Second, we applied a real-time algorithm of pre-emptive dynamic exogenous CO2 administration, and tested different timings. / Results: We found that cardiac output alternation using pacemakers successfully induced PB. Dynamic CO2 therapy, when delivered coincident with hyperventilation, attenuated 57% of the experimentally induced oscillations in end-tidal CO2: SD/mean 0.06±0.01 untreated versus 0.04±0.01 with treatment (p<0.0001) and 0.02±0.01 in baseline non-modified breathing. This translated to a 56% reduction in induced ventilatory oscillations: SD/mean 0.19±0.09 untreated versus 0.14±0.06 with treatment (p=0.001) and 0.10±0.03 at baseline. Of note, end-tidal CO2 did not significantly rise when dynamic CO2 was applied to the model (4.84±0.47 vs 4.91± 0.45 kPa, p=0.08). Furthermore, mean ventilation was also not significantly increased by dynamic CO2 compared with untreated (7.8±1.2 vs 8.4±1.2 L/min, p=0.17). / Conclusions: Cardiac pacemaker manipulation can be used to induce PB experimentally. In this induced PB, delivering CO2 coincident with hyperventilation, ventilatory oscillations can be substantially attenuated without a significant increase in end-tidal CO2 or ventilation. Dynamic CO2 administration might be developed into a clinical treatment for PB. / Trial Registration number: ISRCTN29344450

    Homoplasy corrected estimation of genetic similarity from AFLP bands, and the effect of the number of bands on the precision of estimation

    Get PDF
    AFLP is a DNA fingerprinting technique, resulting in binary band presence–absence patterns, called profiles, with known or unknown band positions. We model AFLP as a sampling procedure of fragments, with lengths sampled from a distribution. Bands represent fragments of specific lengths. We focus on estimation of pairwise genetic similarity, defined as average fraction of common fragments, by AFLP. Usual estimators are Dice (D) or Jaccard coefficients. D overestimates genetic similarity, since identical bands in profile pairs may correspond to different fragments (homoplasy). Another complicating factor is the occurrence of different fragments of equal length within a profile, appearing as a single band, which we call collision. The bias of D increases with larger numbers of bands, and lower genetic similarity. We propose two homoplasy- and collision-corrected estimators of genetic similarity. The first is a modification of D, replacing band counts by estimated fragment counts. The second is a maximum likelihood estimator, only applicable if band positions are available. Properties of the estimators are studied by simulation. Standard errors and confidence intervals for the first are obtained by bootstrapping, and for the second by likelihood theory. The estimators are nearly unbiased, and have for most practical cases smaller standard error than D. The likelihood-based estimator generally gives the highest precision. The relationship between fragment counts and precision is studied using simulation. The usual range of band counts (50–100) appears nearly optimal. The methodology is illustrated using data from a phylogenetic study on lettuce

    Novel cardiac pacemaker-based human model of periodic breathing to develop real-time, pre-emptive technology for carbon dioxide stabilisation.

    Get PDF
    BACKGROUND: Constant flow and concentration CO2 has previously been efficacious in attenuating ventilatory oscillations in periodic breathing (PB) where oscillations in CO2 drive ventilatory oscillations. However, it has the undesirable effect of increasing end-tidal CO2, and ventilation. We tested, in a model of PB, a dynamic CO2 therapy that aims to attenuate pacemaker-induced ventilatory oscillations while minimising CO2 dose. METHODS: First, pacemakers were manipulated in 12 pacemaker recipients, 6 with heart failure (ejection fraction (EF)=23.7±7.3%) and 6 without heart failure, to experimentally induce PB. Second, we applied a real-time algorithm of pre-emptive dynamic exogenous CO2 administration, and tested different timings. RESULTS: We found that cardiac output alternation using pacemakers successfully induced PB. Dynamic CO2 therapy, when delivered coincident with hyperventilation, attenuated 57% of the experimentally induced oscillations in end-tidal CO2: SD/mean 0.06±0.01 untreated versus 0.04±0.01 with treatment (p<0.0001) and 0.02±0.01 in baseline non-modified breathing. This translated to a 56% reduction in induced ventilatory oscillations: SD/mean 0.19±0.09 untreated versus 0.14±0.06 with treatment (p=0.001) and 0.10±0.03 at baseline. Of note, end-tidal CO2 did not significantly rise when dynamic CO2 was applied to the model (4.84±0.47 vs 4.91± 0.45 kPa, p=0.08). Furthermore, mean ventilation was also not significantly increased by dynamic CO2 compared with untreated (7.8±1.2 vs 8.4±1.2 L/min, p=0.17). CONCLUSIONS: Cardiac pacemaker manipulation can be used to induce PB experimentally. In this induced PB, delivering CO2 coincident with hyperventilation, ventilatory oscillations can be substantially attenuated without a significant increase in end-tidal CO2 or ventilation. Dynamic CO2 administration might be developed into a clinical treatment for PB. TRIAL REGISTRATION NUMBER: ISRCTN29344450

    Resonance as the mechanism of daytime periodic breathing in patients with heart failure

    Get PDF
    Rationale: In patients with chronic heart failure, daytime oscillatory breathing at rest is associated with a high risk of mortality. Experimental evidence, including exaggerated ventilatory responses to CO2 and prolonged circulation time, implicates the ventilatory control system and suggests feedback instability (loop gain > 1) is responsible. However, daytime oscillatory patterns often appear remarkably irregular versus classic instability (Cheyne-Stokes respiration), suggesting our mechanistic understanding is limited. Objectives: We propose that daytime ventilatory oscillations generally result from a chemoreflex resonance, in which spontaneous biological variations in ventilatory drive repeatedly induce temporary and irregular ringing effects. Importantly, the ease with which spontaneous biological variations induce irregular oscillations (resonance “strength”) rises profoundly as loop gain rises toward 1. We tested this hypothesis through a comparison of mathematical predictions against actual measurements in patients with heart failure and healthy control subjects. Methods: In 25 patients with chronic heart failure and 25 control subjects, we examined spontaneous oscillations in ventilation and separately quantified loop gain using dynamic inspired CO2 stimulation. Measurements and Main Results: Resonance was detected in 24 of 25 patients with heart failure and 18 of 25 control subjects. With increased loop gain—consequent to increased chemosensitivity and delay—the strength of spontaneous oscillations increased precipitously as predicted (r = 0.88), yielding larger (r = 0.78) and more regular (interpeak interval SD, r = −0.68) oscillations (P < 0.001 for all, both groups combined). Conclusions: Our study elucidates the mechanism underlying daytime ventilatory oscillations in heart failure and provides a means to measure and interpret these oscillations to reveal the underlying chemoreflex hypersensitivity and reduced stability that foretells mortality in this population
    corecore