113 research outputs found

    Isolation and genotyping of Acanthamoeba strains from corneal infections in Italy

    Get PDF
    Acanthamoeba keratitis (AK) is a corneal disease caused by members of a genus of free-living amoebae and is associated predominantly with contact lens (CL) use. This study reports 16 cases of culture-proven AK diagnosed in northern Italy. Genotype identification was carried out with a PCR assay based on sequence analysis of the 18S rRNA gene, and sensitivity and specificity were evaluated in comparison with traditional parasitological techniques. A 405 bp region of the 18S rRNA gene (ASA.S1) including diagnostic fragment 3 (DF3) was amplified using the genus-specific primers JDP1 and JDP2. Genotype assignment was based on phenetic analysis of the ASA.S1 subset of the nuclear small-subunit rRNA gene sequence excluding the highly variable DF3 region. Phylogenetic analysis was also performed on the sequences obtained. All patients complained of monolateral infection; 11 (68.75%) admitted improper CL disinfection. In 14/16 (87.5 %) subjects, corneal scrapings were stained with calcofluor white and haematoxylin and eosin and, in ten cases (62.5 %), microscopy was positive for Acanthamoeba cysts. In vitro culture on 3 % non-nutrient agar plates was obtained in all cases (100 %), whereas cloning and axenic growth were positive for 14 amoebic stocks (87.5 %). PCR analysis had 100 % sensitivity and specificity compared with in vitro axenic culture, showing positive amplification from 15 isolates. All Acanthamoeba strains belonged to the T4 genotype, the main AK-related genotype worldwide. These results confirmed the importance of a complete diagnostic protocol, including a PCR assay, for the clinical diagnosis of AK on biological samples. Genotyping allowed inclusion of all isolates in the T4 group, thus demonstrating the prevalence of this genotype in northern Italy

    Testing the daytime oxidizing capacity of the troposphere: 1994 OH field campaign at the Izaña Observatory, Tenerife

    Get PDF
    A field campaign was carried out during May 1994 at the Izaña station, Tenerife. This campaign was part of the program Environment and Climate sponsored by the European Commission to study the influence of European emissions on the oxidizing capacity of a clean tropospheric environment. Daytime and also nighttime measurements were made, covering the OH as well as the NO3 chemistry. This paper presents the OH measurements taken with a multipass optical absorption spectrometer (MOAS) and discusses the daytime chemistry in a statistical and therefore more preliminary way. All relevant parameters influencing the OH concentration were monitored. From the data the two main contributions to the OH production can clearly be discerned and are given by the primary production following the ozone photolysis and the O(1D)-H2O reaction and by the catalytic reactions of NOx in the recycling process. The latter processes prove to contribute a dominant part to the OH concentration. The measurements of the nonmethane hydrocarbons (NMHC) especially of the biogenics, indicate a considerable influence of the NMHC on the absolute values of the OH concentration at Tenerife.This work has been financially supported by the European Commission (grant EV5V-CT93-0321), by the DFG, and by the Fonds der Chemischen Industrie, which is gratefully acknowledged

    Nocardia transvalensis keratitis: an emerging pathology among travelers returning from Asia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The incidence rate of <it>Nocardia </it>keratitis is increasing, with new species identified thanks to molecular methods. We herein report a case of <it>Nocardia transvalensis </it>keratitis, illustrating this emerging pathology among travellers returning from Asia.</p> <p>Case presentation</p> <p>A 23-year-old man presented with a 10-week history of ocular pain, redness, and blurred vision in his right eye following a projectile foreign body impacting the cornea while motor biking in ThaĂŻland. At presentation, a central epithelial defect with a central whitish stromal infiltrate associated with pinhead satellite infiltrates was observed. Identification with 16S rRNA PCR sequencing and microbiological culture of corneal scraping and revealed <it>N. transvalensis </it>as the causative organism. Treatment was initiated with intensive topical amikacin, oral ketoconazole and oral doxycycline. After a four-week treatment period, the corneal infiltrate decreased so that only a faint subepithelial opacity remained.</p> <p>Conclusion</p> <p><it>Nocardia </it>organisms should be suspected as the causative agent of any case of keratitis in travelers returning from Asia. With appropriate therapy, <it>Nocardia </it>keratitis resolves, resulting in good visual outcome.</p

    Guidance for the Management of Patients with Vascular Disease or Cardiovascular Risk Factors and COVID-19: Position Paper from VAS-European Independent Foundation in Angiology/Vascular Medicine .

    Get PDF
    COVID-19 is also manifested with hypercoagulability, pulmonary intravascular coagulation, microangiopathy, and venous thromboembolism (VTE) or arterial thrombosis. Predisposing risk factors to severe COVID-19 are male sex, underlying cardiovascular disease, or cardiovascular risk factors including noncontrolled diabetes mellitus or arterial hypertension, obesity, and advanced age. The VAS-European Independent Foundation in Angiology/Vascular Medicine draws attention to patients with vascular disease (VD) and presents an integral strategy for the management of patients with VD or cardiovascular risk factors (VD-CVR) and COVID-19. VAS recommends (1) a COVID-19-oriented primary health care network for patients with VD-CVR for identification of patients with VD-CVR in the community and patients' education for disease symptoms, use of eHealth technology, adherence to the antithrombotic and vascular regulating treatments, and (2) close medical follow-up for efficacious control of VD progression and prompt application of physical and social distancing measures in case of new epidemic waves. For patients with VD-CVR who receive home treatment for COVID-19, VAS recommends assessment for (1) disease worsening risk and prioritized hospitalization of those at high risk and (2) VTE risk assessment and thromboprophylaxis with rivaroxaban, betrixaban, or low-molecular-weight heparin (LMWH) for those at high risk. For hospitalized patients with VD-CVR and COVID-19, VAS recommends (1) routine thromboprophylaxis with weight-adjusted intermediate doses of LMWH (unless contraindication); (2) LMWH as the drug of choice over unfractionated heparin or direct oral anticoagulants for the treatment of VTE or hypercoagulability; (3) careful evaluation of the risk for disease worsening and prompt application of targeted antiviral or convalescence treatments; (4) monitoring of D-dimer for optimization of the antithrombotic treatment; and (5) evaluation of the risk of VTE before hospital discharge using the IMPROVE-D-dimer score and prolonged post-discharge thromboprophylaxis with rivaroxaban, betrixaban, or LMWH

    Soft x-ray measurements of z

    Get PDF
    This article reports the experimental characterization of a z-pinch driven-vacuum hohlraum. The authors have measured soft x-ray fluxes of 5 x 10{sup 12} W/cm{sup 2} radiating from the walls of hohlraums which are 2.4--2.5 cm in diameter by 1 cm tall. The x-ray source used to drive these hohlraums was a z-pinch consisting of a 300 wire tungsten array driven by a 2 MA, 100 ns current pulse. In this hohlraum geometry, the z-pinch x-ray source can produce energies in excess of 800 kJ and powers in excess of 100 TW to drive these hohlraums. The x-rays released in these hohlraums represent greater than a factor of 25 in energy and more than a factor of three in x-ray power over previous laboratory-driven hohlraums

    High-temperature dynamic hohlraums on the pulsed power driver Z

    Get PDF
    In the concept of the dynamic hohlraum an imploding z-pinch is optically thick to its own radiation. Radiation may be trapped inside the pinch to give a radiation temperature inside the pinch greater than that outside the pinch. The radiation is typically produced by colliding an outer Z-pinch liner onto an inner liner. The collision generates a strongly radiating shock, and the radiation is trapped by the outer liner. As the implosion continues after the collision the radiation temperature may continue to increase due to ongoing PdV (pressure times change in volume) work done by the implosion. In principal the radiation temperature may increase to the point at which the outer liner burns through, becomes optically thin, and no longer traps the radiation. One application of the dynamic hohlraum is to drive an ICF (inertial confinement fusion) pellet with the trapped radiation field. Members of the dynamic hohlraum team at Sandia National Labs have used the pulsed power driver Z (20 LMA, 100 ns) to create a dynamic hohlraum with temperature linearly ramping from 100 to 180 eV over 5 ns. On this shot zp214 a nested tungsten wire array of 4 and 2 cm diameters with masses of 2 and 1 mg imploded onto a 2.5 mg plastic annulus at 5 mm diameter. The current return can on this shot was slotted. It is likely the radiation temperature may be increased to over 200 CV by stabilizing the pinch with a solid current return can. A current return can with 9 slots imprints 9 filaments onto the imploding pinch. This degrades the optical trapping and the quality of the liner collision. A 1.6 mm diameter capsule situated inside this dynamic hohlraum of zp214 would see 15 kJ of radiation impinging on its surface before the pinch itself collapses to a 1.6 mm diameter. Dynamic hohlraum shots including pellets are scheduled to take place on Z in September of 1998
    • 

    corecore