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Hohlraurns of full i~ni[ic~nsca!c (fi-IIIm dianlctcr by 7-mm kng[h) have been heated

by x-rays fr{~ma z-pinch (argc( on Z (() a varic[y of temperatures and pulse shzpes

which can be u.wd [t) si[~lul;([c(hc c:[rIy ph:[scs ()[ [fw ih’a(i(~nallgnitit)rl Fxility (N IF)

tempcratuw drive. Ttlc pulse sllapc is v;lricd by clu~n~ing [I]c on-axis targc[ of [he z

pinch in a s[;l[ic-~v;lll-tlolllr:llllllgctlillc[ry [F/t.~io//Tcc/[IIof, 35.260 ( 1999)]. A 2-pm-

(hick tvallwl Cu cylindrical [arset of X-il]m di:inw[er tilled \vitll If) mg/cm3 CH, for

example, produces ~oof-p(~l,{cCtlndi[i(lns [lf -S5 CV for a duration of -10 ns, while a

solid cylindrical targw of 5-nlm dianwcr and 14-mg/c m’ CH generates j7r.st-srep-

p((l.sc conditions cl[ - 1?2 CV (or o dura[ion of d few ns. Altwna(ively, reducing the

hohlr~unl size (to 4-nlnl c!ianwcr by +mnl Icn$h) with [he Ialwr targe[ has incremed

the peak tcmperalurc [{j - I5(} cV, Lvlliuh is Characteristic of a .s~{c(~rrfl-.rtep-pt(f.se

(empcraturc. [n yncrai, [[w tcmpcraturc T of the.w x-ray driven hohlraurns is in

agrwmcnt ~vi[hthe Planckion rc[a[it)n T-(l’/A) ‘;4.P is the measurul x-ray input power

and A is the surfwx arc:t u]. [Iw Il[]hlruum. Ful[y-in[cgratvJ 2-D radiation-

hydrodynamic Simulations (II’ [fw z pinull aml suhsquen( Iwh[ruum heoting show

plasma densi[ies within [k usuful volulllc of (he h[~hlraum.s to be on [he order of air

or less.
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1. INTRODUCTION

Radiation environments chwwtcristic of dlose encountcw-1 during the low-temperature~oor @se

and subsequent higher-tempemtuw wrlv-.sr?p pfI/.stJ.s (Fig. 1) required for indirect-drive ICF

ignition on FUF [1, 2] ore desired in orticr m pmvicie J plot[olrn to Mtcr understand the dynamics

of NIF hohlr~urns ~nd cupsules prior to NIF completion [3]. In purticulur’, (1) the dynamics of the

proposed He-till wail tamping find hole cl[wIrc in {iw NIF hohlr~um. w-d (2) improved copsule

ablator burn-through rates and silock prop:lg:ltion

components. In dlis paper, wc show tho[ un

velocities [4] m-c needed to better design these

xxid hoillruurn using [he stutic-wall-hohlraum

geometry [5] he~tcd hy x-mys l“rom u ~.-pinch on the Z gmem[or [61 is capubk of providing

environments for such pre-NIF S[llLiics.

~) tile uxial hohlrwrn is pi~ccci above a centml hohlraum inIn this..singie-sidcd x-r~y drive (Fig. _ ,

an x-ray-producing z-pincil. X-rJys produutx! in the central hohlraum enter d-w axial hohhwm

through a radi~[ion-cntl-~nce-l~olc (REH) :md iwdt its walls. The x-rays are generakxl in the centd

hohlraum by the thc[malizotion of the kinetic energy quit-cd wilen a cylindrical plasma shell,

created tIy one or more wire urrtiys, coiiides with J puisc-sh~ping target (PST) within the z-pinch.

In this armngemcnt, the ~vire.s(wi~ici~arc ma(ic of }V) form m annuldr plasma mdimion case [7] by

the time they strike the PST ((irsl strike). The hi:il-uL(>mic-nLlmbcr rxiiation case traps a fraction of

the x-rays produced in a ccn[mi hohimurn [mmcd from the PST (as in u dyrmmic-hohlraum [8]),

and rxiia[ion Iloivs [rem [iw inwior of LIWPST into [he axiai hohlraurn, whose walls remain

relatively static. A foam Iiil is uscci in the PST so dlm us tit-d sta:n~tion is approached, the foam

will remain trunsp~rcnt to the x-rays, yet provide u b:lck-prcssul”c on the imploding mass. The back-



2. EXPERIMENTAL ARRANGEMENT

Figure 2 illustrates the :eomctry used for the single-sided x-my drive discussed here, and points

out the location of the wire-amy z-pinch load at the tm-ninus of the Z generator, the PST (which

forms the cen[ml hohlraurn), the REH, and the uxi:ll hohlrdum. The use of Ior:e numbers of wires

in armys is essential for generu[ing high rodiakd powers from z-pinches [9]. Nesting the arrays,

moreover, enhw-m.s [he power in tw:cdcss pinches [ lo].. Accordingly, the load in these

experiments is made of outer and inner m-~ys of wire [hat number 240 w-d 12[), respectively. In Z

the load current ramps m J peti oi --?(} M.4 in - I{K)ns. The wmci~ted w-my diumeters of 40 mm

and 20 mm, m-my m~sses of 2 mg und 1 mg, md wire length of -10 mm are designed to.

approximately optimize the coupling of k gcnerfitor’s mognctic energy into kinetic energy of the

a-mys prior to sta:n~li{~n. Tk p~~h of dw curwnt rc~ulm is through the outside of the cylindrical

mode (A in Fig. 2A)), Yvhich is solid cxucpt I“or a 3-mm diameter di~gmstic aperture having

conducting wires spwed every mm (Fig. ~(’). This design minimi7~s he az~uth~ ma~ef.ic

perturbatjo~ on the implodin: urrfiy, but still permits the monitoring of the radiation generated

outside the implosion. To minimize W plwmu sliding across the REH and blocking the radiation

generated in the ccnlral hohlmum [rorn cnwrin: lhc uiol hohlkurn [ 11], the anode is slanted 3

degrees to [hc hori~.ontal hctwwn k inner Jmy :md the PST (Fig. 2B). To maintfiin symmetry, the

cathode is simil~rly slmtcd (Fig. 2A).

The axial hohlmums used arc d~in-walled (25.4-pm thickness) AU cylinders, measuring either 6-

mm in di~meter hy 7-mm in hci:h[ (igni[ion SCU[C[Fig.. 2A]) or 4-mm in both diameter and height.

The axial hohlrourn kmpcruture is rneusurcd with two independent diagnostics, each of which

views the intclim- WOI10( dw hohlrduin [Ilrt)ugh the same :lpellure (-3-mm diameter for the large

hohlruum or 2-mm dimnetcr for dm small h[)hlmum), bu[ ~t A2(fl)about the normal to [he hole in the

horizontal pkme. In one diti:no.stic, the {cmpw-aturc is measured using a set of twelve silicon-diodes

mounted downstrum from Utl-:ln.snlissi{)n-:l<:lling-spectr(>metcl-, which is positioned to be sensitive

to x-rays in ciiscrctc energy ch;mncls spunniflg 100” to 600” cV. In the other diagnostic, the
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temperature is memlred using J totul-energ y holomekr ~nd Qset of K- md L-edge filtered x-ray

diodes (XRDS) sensitive to x-rays in four discrctc chtinncls covering a similar energy range [6].

Pkrna closure of [he diagnostic hole wi[h lime is mctisured with :1multi-filkmd, fast-framing, pin-

hole camer~ (PHC) sensitive to x-ruys in i(jur discrete spemrol chmnels covering 100 to 600 eV

[12]. Relative comp~lisons ‘twtwccn dw r~di:l[ion detcctm-s within eich diagnostic set indicate no

measumhk deviation in intcrnd w.irnuthtil symmcwy of the hohlruurn with time. The peak

tempemtut-e extracted from either diagnostic sc~ ag-ces m within 2%t370 when avemyd over the

shots taken. .The uncert:linty refers to dw R?vIS sho[-m-shot vuriaticm.’ For the temperatures

discussed here, a contction for dw rcjuccd hole size wi[h time ‘DJsecion the avtmges of these

x-my input

T-(P/A)’”,

the highest

temperature ktum of - 15{)CV corrc.spend to those meusurtxl with the 6x7-mm2 hohlr~um.

The PSTS Jm xc cons[ruc[ed wi[h ~ (bin mc[;ll (CU m- AU) outside shel[ surrounding a CH-foom

cylinder. The rmgc of shell thicknuss, [ourn density. and diume[cr fielded includes 0-18 \lg/cm2, O-

14 m~cm~, ~nd ()-S mm, respectively. In gcrwr:ll, inc;usin: dw Lliomewr of the PST or mass of its

components incrusts the dum~ion tind ri.wtimc 0[ the x-my pulse delivered to the hohlraurn prior to

final stagnation, and simultaneously c!ccrcuscs dw initial on-axis x-my power. For Q PST of 8-mm

diameter filled tvi[h 6 mg/ cm~ [mlm. I“orcx:lmplc, increusiny the ~hicknc.ss of the shell from O to 18

LL~cn~2incrcuses dl~.- pulse dur~tion l’r(ml S U) IS ns. the lisctimc t“rom 3 to 7 ns, and reduces the

peak x-ray power [rem 7 m / TIV (Fig. 4). R:ldi:ilion cxtc~i(]r m [he PST is monitored through a

smtill aperture (Fig. 2C) in the current rc[urn cun with J suit of off-axis diagnostics similar to that of

the on-uxis suite (Fig. 2A).
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3. HOHLRAUNI TEMPERATURE PULSE SHAPES

Figure 1 illus[m[es two represcnu[iyc k[mpw[ure pu]se shopes ksi:ned [o ignite 2-mm diameter

B~-coakd capsules on NIF. In [he Ii:urc, JV Jnd D correspond to the 3{MkV peak-temperature and

reduced peak-tempemture drive of Rc[s. 13 :Ind 14, respectively. Shown UISOin the figure are three

temperature pulse shopes meusunxl ivi[h two Llit’[crcntPSTS und the two different hohlmurn sizes.

Shots 2252 and 2441 use the 6x7-mm2 hohlraum. while 2442 uses the 4x4-mm2 hohlroum. Shot

2252 uses u 5.8-mm diameter REH wi[h J PST of S mm diameter mci J 18-@cm2 Cu shell tilled

with 10 mg/c’rn3fo~m. Shots 2441 ~nd 2442 List a +mm diameter REH with a 5-mm diameter PST

constructed solely of 14-m:g/cm3 fotirn. The {crnpcrature tleld :enerutecl with the larger-diameter,

more-massive PST matches d~c field required l’or simulu[ing [hc -85 eV, - 1[)-nsfootpulse in the

iWF-scak hohlroum. The field :cncmhxl wi[h the lCSS massive tw-get, in contrast, provides a

soIid foum tfirget pclmits the pinch [o compruss N) -().5-mm rxlid dimensions, smaller hohlraums

with recfiic=edcii~metcrs cun Jlso hc cl”licicn[]y Iw;mxl with [his tqct w-d therefore driven to yet

higher temper~turc.s. Thus, :Il[crn:l[ivcly. rcducin: tht hohlnum size with [his

higher tempertiture tissoci:l[cd wi[h [hc /7e.vt .i”rcll to k rc:lchtxl. us shown

temperature history 2442 in Fi:. 1.

4. HOHLRAUJI CHARACTERISTICS

Radiution-magnetohy drodyn:lmic cock (RNIHC) simulations such w those of Ref. 11 are used to

understand the underlying dynurnics of (he implosion, ;md to provide insight into the radiation and

plasma fields in.side dw uxi~l hohlr:lum. The.w simul:l[ion.s wc 2-D integ”atcd cdculo[ions that td!e

into account the development ot” the R~ylci:h-T:\yl[w in.whili[y in Lk r-z plane O( the imploding

load, entxgy gener~tion as the plasm:l ~sscmhlcs on the PST, und wdi~tion tmnsport (in the

diffusion uppmximation) to dw miol ht~hlr:]unl: Figul”e 5 plots the simulated rxiiation ond lower

bound on the wfill tempcmture (:lLtin op[ical dcpIh 0[ ().66) of the axial hohlraurn 4 mm above the

5
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REH, for example, con-espondin: m the cordi[ions of shot z~~ 1. ~~~ording to ~~ simulation! ~~

hohlmum is first h~thed in a Iow-tempemturc Ikkl of -30-40 eV (rwii2[ion pre-pulse), once the

outer m-my strikes the inner Irmy Jt -214 ns. \Vhen the lexiing edge of [he combined imploding

977 ns, the power entering the hohlraumplasma shell next strikes [he outer edge of [hc PST M ___

rises rapidly uncl the fi.ssocioted [cmpcra[w O( [he hoh]ruum quickly increwx [o >120 eV by

-z~ 1.5 Rs. At this [imc,(1ICp{~sm~ hu~h]cs ~l.ssocid[cdwith L]ICJV shell hlvc jus[ begun (O stagnate

on axis. The con[inutxl rise in the tempcm[urc bc[~vccn -231.5 und 234 ns cm-responds to the 2-D

smgru[ion O( the bubbles on tixis during this [Inol s[~gn~tion process. Ivkimum simulated and

measured total-mdio[cd ot-f-~xis power IMvc hwn synchronizixl so [htit the peaks occur at 234 ns.

The measured temperature prot”ile.sshown in Fig. 1 uII wise during tic he~[ing between the first

strike on the fo~m und [hc hcginning of Lhc huhhks s[u~nming on axis. Experimentally, the

magnitude of [he cukuluted ~cmpcrtiturc cnhxnccmcnt duling firul stagnation is not observed for any

of the PSTS, M ilIustrawd in the compw-ison shown in Fig. 5. The absence of the enhancement in

the measurements relutive to the simukuiort muy be due to: (1) 3-D effects not included in the 2-D
_.._—..

simulation; (2) undcrcstimotes of dm opuci[y within [he compressing PST; (3) inxkquacy of the

diffusion approxim~[ion duling pinch; (4) rcduccd rxiia(ion contuinmen[ hy the tungsten phsm~

during pinch; (5) Lmdcrcstimutcs t~[ :lhl~l[ivc CILWWC()( [Iw REH; (6) additional tungsten sliding

across the REH [ 1I]; or possibly (7) [hc inudcqu~cy ol’the model to prctlict [he de[uils of the pinch.

Enabling the enh:mcemcn[ to occur W(IUICI pcrmi[ multiple-s~cp pulses to be simuiuted m well as just

the singk steps shown in Fig. 1. The simulations sug~est. however, th~t even with the calculated

enhancement [he plasma

example, kt~veen 231.5

0.04 [0 0.2 mm, the Au

Illling [he hohlruum is minimal. For the 2441 simulation of Fig. 5., for

and 234 ni [hc calcuktcd ruiius of the REH hm been reduced by only

\vJll (4 mm aht~vc dlc REH) has txpundtd mdiolly by only ().04 to 0.25

mm into [he interim- of [he hohlr~urn, and [Iw \V pl~sma htis expondc(l axially through only the

-().5-mm depth of the REH apcr[urc, wi[h only CH pl~sm~ entclin: the axi~l hohlraum. Figure 6.

plots the density of this CH plusm:~ in the uial hohlrfiurn 2 mm otmvc [he REH, and shows that the

density remuins low, ohout thut of dir, [or [hc dur~tion of [hc v~mpera[ure rise. ‘“



5. CONCLUSION’S

In conclusion. [he rneasuremtm[.s m:ldc with [his sin~ic-sidwi-drive, st~tic-wall-hohlmum

geometry on Z have shown the ubility to gencmte [empem[urc pulse shapes of u[ility to pre-lNIF

studies up to peik temperatures 0[ -130 CV in [uII iyition-scale hohlmurns, and -150 eV in

reduced scale hohlmums. The RMHC simul;llion.s. like those of the measurements [ 16] suggest that

over useful rxli~tion drive times, [hc m~in volume of the hohlmurns remains relatively free of z-

pinch plasma; Althc)ugh the 2-D simul~[i{~ns wc useful, J numlmr of discrcp~ncies remain between

the behavior ckul:lted und metisurud.

If, instead of J single pinch. dw wire muss were to k clist[ihu[d in two independent pinches of

roughly half the kngth of u singlu ~]nc(in [JrdcI”LOm~in[uin J similtir over-oil loud induc~nce) with

the a,,id hohlr~urn s~ndwichcd hetwcen k LWO,k power en[eling the hohlr~um would be

roughly doubled because the on-uxis power is gcnc~~[cd plimtilily new the pinch ends. The peak

tempermur~ awwifi[ed wi[h [his singlt-fcwd, hu[ now two-sided x-ray drive (as in the geometry.—.

shown in Fig. 3 of Ref.5) would then lx incrcustxl to 155 eV for [he 6x7-mm2 hohlraum [15] or

-180 eV for [he 4x4-mm2 hohlrdum. Sc:lliny this concept to ti 50-MA driver, which is chmcteristic

of the next gencm[ion z-pinch d[ivcr king considercci [ 17], moreover, could thus provide

conditions for s(udying implosions dtivcn :It pc:lk temperti[urw in the mn~e of 240-280 eV,

depending on hohlmum size.
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Fig(Ire C2r)tions:

1. Comparison of rcprknt~tivc NIF radi:l[it>n [empcnl[urc protlks (W and D) with those

measured [or Shots 2251, 244 [, an(i 2442.

2. Schem~tic ofsinglc-sided, s[ti~ic-~v:lli-llt)i~lr:ll~(nyeomc[ry .
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3. Measured hohlmurn temper~ture tis o function of the rneasurd cm-~xis x-ray power without the

hohkaum present, for the indicated sho[ puirs. Shown ~lso is [hut expected from the T-(P/A)l°

.Pkmckiun relation, using a cllculdtcd nonnllizu[inn point tit 13-TW [ 15].

4. Peak power, risetirne, Jnd dur:l[ion to [in:ll st~gnation of mtxtsured on-axis x-ray pulse versus

shell thickness, for o X-mm diameter PST wi[h 6 mgkc t’ourn till.

measured for Shot 2441.

6. Simulated on-axis pltism~ density 2-mm uhove the REH for Shot 2441.
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Measured Temperature of NIF Sized (153 mmA2)
Hohlraum vs Measured Incident On-Axis Power “

Agrees with Theory
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