528 research outputs found
Cyclotide–membrane interactions: Defining factors of membrane binding, depletion and disruption
AbstractThe cyclotide family of plant-derived peptides is defined by a cyclic backbone and three disulfide bonds locked into a cyclic cystine knot. They display a diverse range of biological activities, many of which have been linked to an ability to target biological membranes. In the current work, we show that membrane binding and disrupting properties of prototypic cyclotides are dependent on lipid composition, using neutral (zwitterionic) membranes with or without cholesterol and/or anionic lipids. Cycloviolacin O2 (cyO2) caused potent membrane disruption, and showed selectivity towards anionic membranes, whereas kalata B1 and kalata B2 cyclotides were significantly less lytic towards all tested model membranes. To investigate the role of the charged amino acids of cyO2 in the membrane selectivity, these were neutralized using chemical modifications. In contrast to previous studies on the cytotoxic and antimicrobial effects of these derivatives, the Glu6 methyl ester of cyO2 was more potent than the native peptide. However, using membranes of Escherichia coli lipids gave the opposite result: the activity of the native peptide increased 50-fold. By using a combination of ellipsometry and LC-MS, we demonstrated that this unusual membrane specificity is due to native cyO2 extracting preferentially phosphatidylethanolamine-lipids from the membrane, i.e., PE-C16:0/cyC17:0 and PE-C16:0/C18:1
Comparing TensorFlow Deep Learning Performance Using CPUs, GPUs, Local PCs and Cloud
Deep learning is a very computational intensive task. Traditionally GPUs have been used to speed-up computations by several orders of magnitude. TensorFlow is a deep learning framework designed to improve performance further by running on multiple nodes in a distributed system. While TensorFlow has only been available for a little over a year, it has quickly become the most popular open source machine learning project on GitHub. The open source version of TensorFlow was originally only capable of running on a single node while Google’s proprietary version only was capable of leveraging distributed systems. This has now changed. In this paper, we will compare performance of TensorFlow running on different single and cloudnode configurations. As an example, we will train a convolutional neural network to detect number of cells in early mouse embryos. From this research, we have found that using a local node with a local high performance GPU is still the best option for most people who do not have the resources to design bigger system implementations
Capillary micromechanics: Measuring the elasticity of microscopic soft objects
We present a simple method for accessing the elastic properties of
microscopic deformable particles. This method is based on measuring the
pressure-induced deformation of soft particles as they are forced through a
tapered glass microcapillary. It allows us to determine both the compressive
and the shear modulus of a deformable object in one single experiment.
Measurements on a model system of poly-acrylamide microgel particles exhibit
excellent agreement with measurements on bulk gels of identical composition.
Our approach is applicable over a wide range of mechanical properties and
should thus be a valuable tool for the characterization of a variety of soft
and biological materials
End-Tagging of Ultra-Short Antimicrobial Peptides by W/F Stretches to Facilitate Bacterial Killing
BACKGROUND: Due to increasing resistance development among bacteria, antimicrobial peptides (AMPs), are receiving increased attention. Ideally, AMP should display high bactericidal potency, but low toxicity against (human) eukaryotic cells. Additionally, short and proteolytically stable AMPs are desired to maximize bioavailability and therapeutic versatility. METHODOLOGY AND PRINCIPAL FINDINGS: A facile approach is demonstrated for reaching high potency of ultra-short antimicrobal peptides through end-tagging with W and F stretches. Focusing on a peptide derived from kininogen, KNKGKKNGKH (KNK10) and truncations thereof, end-tagging resulted in enhanced bactericidal effect against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Through end-tagging, potency and salt resistance could be maintained down to 4-7 amino acids in the hydrophilic template peptide. Although tagging resulted in increased eukaryotic cell permeabilization at low ionic strength, the latter was insignificant at physiological ionic strength and in the presence of serum. Quantitatively, the most potent peptides investigated displayed bactericidal effects comparable to, or in excess of, that of the benchmark antimicrobial peptide LL-37. The higher bactericidal potency of the tagged peptides correlated to a higher degree of binding to bacteria, and resulting bacterial wall rupture. Analogously, tagging enhanced peptide-induced rupture of liposomes, particularly anionic ones. Additionally, end-tagging facilitated binding to bacterial lipopolysaccharide, both effects probably contributing to the selectivity displayed by these peptides between bacteria and eukaryotic cells. Importantly, W-tagging resulted in peptides with maintained stability against proteolytic degradation by human leukocyte elastase, as well as staphylococcal aureolysin and V8 proteinase. The biological relevance of these findings was demonstrated ex vivo for pig skin infected by S. aureus and E. coli. CONCLUSIONS/SIGNIFICANCE: End-tagging by hydrophobic amino acid stretches may be employed to enhance bactericidal potency also of ultra-short AMPs at maintained limited toxicity. The approach is of general applicability, and facilitates straightforward synthesis of hydrophobically modified AMPs without the need for post-peptide synthesis modifications
Highly Selective End-Tagged Antimicrobial Peptides Derived from PRELP
Background: Antimicrobial peptides (AMPs) are receiving increasing attention due to resistance development against conventional antibiotics. Pseudomonas aeruginosa and Staphylococcus aureus are two major pathogens involved in an array of infections such as ocular infections, cystic fibrosis, wound and post-surgery infections, and sepsis. The goal of the study was to design novel AMPs against these pathogens. Methodology and Principal Findings: Antibacterial activity was determined by radial diffusion, viable count, and minimal inhibitory concentration assays, while toxicity was evaluated by hemolysis and effects on human epithelial cells. Liposome and fluorescence studies provided mechanistic information. Protease sensitivity was evaluated after subjection to human leukocyte elastase, staphylococcal aureolysin and V8 proteinase, as well as P. aeruginosa elastase. Highly active peptides were evaluated in ex vivo skin infection models. C-terminal end-tagging by W and F amino acid residues increased antimicrobial potency of the peptide sequences GRRPRPRPRP and RRPRPRPRP, derived from proline arginine-rich and leucine-rich repeat protein (PRELP). The optimized peptides were antimicrobial against a range of Gram-positive S. aureus and Gram-negative P. aeruginosa clinical isolates, also in the presence of human plasma and blood. Simultaneously, they showed low toxicity against mammalian cells. Particularly W-tagged peptides displayed stability against P. aeruginosa elastase, and S. aureus V8 proteinase and aureolysin, and the peptide RRPRPRPRPWWWW-NH2 was effective against various "superbugs'' including vancomycin-resistant enterococci, multi-drug resistant P. aeruginosa, and methicillin-resistant S. aureus, as well as demonstrated efficiency in an ex vivo skin wound model of S. aureus and P. aeruginosa infection. Conclusions/Significance: Hydrophobic C-terminal end-tagging of the cationic sequence RRPRPRPRP generates highly selective AMPs with potent activity against multiresistant bacteria and efficiency in ex vivo wound infection models. A precise "tuning'' of toxicity and proteolytic stability may be achieved by changing tag-length and adding W-or F-amino acid tags
Non-Equilibrium in Adsorbed Polymer Layers
High molecular weight polymer solutions have a powerful tendency to deposit
adsorbed layers when exposed to even mildly attractive surfaces. The
equilibrium properties of these dense interfacial layers have been extensively
studied theoretically. A large body of experimental evidence, however,
indicates that non-equilibrium effects are dominant whenever monomer-surface
sticking energies are somewhat larger than kT, a common case. Polymer
relaxation kinetics within the layer are then severely retarded, leading to
non-equilibrium layers whose structure and dynamics depend on adsorption
kinetics and layer ageing. Here we review experimental and theoretical work
exploring these non-equilibrium effects, with emphasis on recent developments.
The discussion addresses the structure and dynamics in non-equilibrium polymer
layers adsorbed from dilute polymer solutions and from polymer melts and more
concentrated solutions. Two distinct classes of behaviour arise, depending on
whether physisorption or chemisorption is involved. A given adsorbed chain
belonging to the layer has a certain fraction of its monomers bound to the
surface, f, and the remainder belonging to loops making bulk excursions. A
natural classification scheme for layers adsorbed from solution is the
distribution of single chain f values, P(f), which may hold the key to
quantifying the degree of irreversibility in adsorbed polymer layers. Here we
calculate P(f) for equilibrium layers; we find its form is very different to
the theoretical P(f) for non-equilibrium layers which are predicted to have
infinitely many statistical classes of chain. Experimental measurements of P(f)
are compared to these theoretical predictions.Comment: 29 pages, Submitted to J. Phys.: Condens. Matte
Lipoprotein ability to exchange and remove lipids from model membranes as a function of fatty acid saturation and presence of cholesterol
Lipoproteins play a central role in the development of atherosclerosis. High and low-density lipoproteins (HDL and LDL), known as 'good' and 'bad' cholesterol, respectively, remove and/or deposit lipids into the artery wall. Hence, insight into lipid exchange processes between lipoproteins and cell membranes is of particular importance in understanding the onset and development of cardiovascular disease. In order to elucidate the impact of phospholipid tail saturation and the presence of cholesterol in cell membranes on these processes, neutron reflection was employed in the present investigation to follow lipid exchange with both HDL and LDL against model membranes. Mirroring clinical risk factors for the development of atherosclerosis, lower exchange was observed in the presence of cholesterol, as well as for an unsaturated phospholipid, compared to faster exchange when using a fully saturated phospholipid. These results highlight the importance of membrane composition on the interaction with lipoproteins, chiefly the saturation level of the lipids and presence of cholesterol, and provide novel insight into factors of importance for build-up and reversibility of atherosclerotic plaque. In addition, the correlation between the results and well-established clinical risk factors suggests that the approach taken can be employed also for understanding a broader set of risk factors including, e.g., effects of triglycerides and oxidative stress, as well as local effects of drugs on atherosclerotic plaque formation
Proteolysis of Human Thrombin Generates Novel Host Defense Peptides
The coagulation system is characterized by the sequential and highly localized activation of a series of serine proteases, culminating in the conversion of fibrinogen into fibrin, and formation of a fibrin clot. Here we show that C-terminal peptides of thrombin, a key enzyme in the coagulation cascade, constitute a novel class of host defense peptides, released upon proteolysis of thrombin in vitro, and detected in human wounds in vivo. Under physiological conditions, these peptides exert antimicrobial effects against Gram-positive and Gram-negative bacteria, mediated by membrane lysis, as well as immunomodulatory functions, by inhibiting macrophage responses to bacterial lipopolysaccharide. In mice, they are protective against P. aeruginosa sepsis, as well as lipopolysaccharide-induced shock. Moreover, the thrombin-derived peptides exhibit helical structures upon binding to lipopolysaccharide and can also permeabilize liposomes, features typical of “classical” helical antimicrobial peptides. These findings provide a novel link between the coagulation system and host-defense peptides, two fundamental biological systems activated in response to injury and microbial invasion
- …