977 research outputs found

    Far-infrared properties of optically-selected quasars and Seyfert galaxies

    Get PDF
    Pointed IRAS observations and ground based observations are used to determine the infrared properties of optically selected galaxies and quasars. The use of complete, unbiased, optically selected samples means that statistical tests can be applied to probe the underlying properties of active galactic nuclei (AGNs). The near infrared to millimeter spectral energy distributions (SEDs) were studied of the CfA Seyfert galaxies, a well defined, unbiased sample of 25 Type 1 and 23 Type 2 Seyfert galaxies selected by optical spectroscopy. Data given show strong trends in the infrared SEDs. Strong evidence is also given that the infrared spectra of Seyfert 2 galaxies are dominated by thermal emission from warm dust, while nonthermal emission is more important in the spectra of quasars and luminous Seyfert 1 nuclei

    How many active galaxies and QSOs will future Space Missions detect?

    Full text link
    Averaged spectral energy distributions (SEDs) of active and starburst galaxies from the 12 micron sample in the Local Universe and Quasars, from an optically selected sample at a mean redshift =0.7, are built from optical/near-IR/far-IR (IRAS & ISO) photometric observations. These SEDs are then used to predict at various redshifts the number of Seyfert type 1 and type 2, starburst, normal galaxies, and quasars, that will be detected by future Space Missions dedicated to far-infrared and submillimeter astronomy, like SIRTF and Herschel. These predictions are then compared with the expected capabilities and detection limits of future deep far-IR surveys. Possible ways to identify AGN candidates on far-IR colour-colour plots for follow-up observations are then explored.Comment: accepted in Ap

    The ultraviolet excess of quasars 3: The highly polarized quasars PKS 0736+017 and PKS 1510-089

    Get PDF
    Ultraviolet/optical/infrared spectrophotometry of the highly-polarized quasars (HPQ's) PKS 0736+017 and PKS 1510-089 is analyzed. A blazar continuum component like that in BL Lac objects (e.g. with violent variability, high polarization, and a steep power-law shape) contributes about half the visual light of 1510-089, and at least three-quarters of that in 0736+017. The remaining light has the same spectrum as normal (low-polarization) quasars, including an ultraviolet excess or blue bump, which is easily detected in the IUE spectra of 1510-089, and weakly detected in 0736+017. The line fluxes do vary, but not as much as the continuum. The ratios of the broad emission lines, and the Balmer continuum are normal in both quasars

    DEIMOS Observations of WISE-Selected, Optically Obscured AGNs

    Full text link
    While there are numerous criteria for photometrically identifying active galactic nuclei (AGNs), searches in the optical and UV tend to exclude galaxies that are highly dust obscured. This is problematic for constraining models of AGN evolution and estimating the AGN contribution to the cosmic X-ray and IR backgrounds, as highly obscured objects tend to be underrepresented in large-scale surveys. To address this, we identify potentially obscured AGNs using mid-IR color colors from the Wide-field Infrared Survey Explorer (WISE) catalog. This paper presents the results of optical spectroscopy of obscured AGN candidates using Keck DEIMOS, and their physical properties derived from these spectra. We find that a W1W2>0.8W1-W2>0.8 color criterion effectively selects AGNs with a higher median level of E(BV)E(B-V) extinction compared to the AGNs found in the SDSS DR7 survey. This optical extinction can be measured using SED modeling or by using rW1r-W1 as a measure of optical to IR flux. We find that specific, targeted observations are necessary to find the most highly optically obscured AGNs, and that additional far-IR photometry is necessary to further constrain the dust properties of these AGNs.Comment: 20 pages, 25 figures, accepted by MNRA

    The Bright Ages Survey. II. Evolution of Luminosity, Dust Extinction, and Star Formation from z = 0.5 to z = 2.5

    Get PDF
    The Bright Ages Survey is a K-band-selected redshift survey over six separate fields with UBVRIzJHK imaging covering a total of 75.6 arcmin(2) and reaching K = 20-20.5. Two fields have deep HST imaging, while all are centered on possible overdensities in the z similar to 2 range. Here we report photometric redshifts and spectroscopy for this sample, which has been described in Paper I. We find 18 galaxies with spectroscopic redshifts of z > 1:5. The derived rest-frame R-band luminosity functions show strong evolution out to z = 2. The luminosity function at z = 2 shows more bright galaxies than at any other epoch, even the extrapolated z = 3 luminosity function from Shapley et al. However, the R-band integrated luminosity density remains roughly constant from to z = 0:5 to z = 2. Evolved galaxies (E, S0, Sa) show a decreasing contribution to the total R-band luminosity density with redshift. The dust extinction in our K-selected sample is moderately larger [median z = 2 E(B - V) 0:30] than that found in Lyman break galaxies, although not enough to make a significant impact on the total light or star formation found at high redshift. We measure the extinction-corrected star formation rate density at z 2, finding ρ_(SFR)(z = 1.5-2.5)= 0.093 M_⊙ yr^(-1) Mpc^(-3), consistent with a relatively flat instantaneous star formation rate from z = 1-4

    Corrected Table for the Parametric Coefficients for the Optical Depth of the Universe to Gamma-rays at Various Redshifts

    Full text link
    Table 1 in our paper, ApJ 648, 774 (2006) entitled "Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays" had erroneous numbers for the coefficients fitting the parametric form for the optical depth of the universe to gamma-rays. The correct values for these parameters as described in the original text are given here in a corrected table for various redshifts for the baseline model (upper row) and fast evolution (lower row) for each individual redshift. The parametric approximation is good for optical depths between 0.01 and 100 and for gamma-ray energies up to ~2 TeV for all redshifts but also for energies up to ~10 TeV for redshifts less than 1.Comment: Table 1 corrected and new gamma-ray energy range of validity give

    Intergalactic Photon Spectra from the Far IR to the UV Lyman Limit for 0<z<60 < z < 6 and the Optical Depth of the Universe to High Energy Gamma-Rays

    Full text link
    We calculate the intergalactic photon density as a function of both energy and redshift for 0 < z < 6 for photon energies from .003 eV to the Lyman limit cutoff at 13.6 eV in a Lambda-CDM universe with ΩΛ=0.7\Omega_{\Lambda} = 0.7 and Ωm=0.3\Omega_{m} = 0.3. Our galaxy evolution model gives results which are consistent with Spitzer deep number counts and the spectral energy distribution of the extragalactic background radiation. We use our photon density results to extend previous work on the absorption of high energy gamma-rays in intergalactic space owing to interactions with low energy photons and the 2.7 K cosmic background radiation. We calculate the optical depth of the universe, tau, for gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from ~0 to 5. We also give an analytic fit with numerical coefficients for approximating τ(Eγ,z)\tau(E_{\gamma}, z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z = 0.117 and compare it with the spectrum observed by the H.E.S.S. air Cherenkov gamma-ray telescope array.Comment: final version to be published in Ap
    corecore