112 research outputs found

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intraindividual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available.Peer reviewe

    ArfB can displace mRNA to rescue stalled ribosomes

    Get PDF
    Ribosomes stalled during translation must be rescued to replenish the pool of translation-competent ribosomal subunits. Bacterial alternative rescue factor B (ArfB) releases nascent peptides from ribosomes stalled on mRNAs truncated at the A site, allowing ribosome recycling. Prior structural work revealed that ArfB recognizes such ribosomes by inserting its C-terminal alpha-helix into the vacant mRNA tunnel. In this work, we report that ArfB can efficiently recognize a wider range of mRNA substrates, including longer mRNAs that extend beyond the A-site codon. Single-particle cryo-EM unveils that ArfB employs two modes of function depending on the mRNA length. ArfB acts as a monomer to accommodate a shorter mRNA in the ribosomal A site. By contrast, longer mRNAs are displaced from the mRNA tunnel by more than 20 A and are stabilized in the intersubunit space by dimeric ArfB. Uncovering distinct modes of ArfB function resolves conflicting biochemical and structural studies, and may lead to re-examination of other ribosome rescue pathways, whose functions depend on mRNA lengths

    Towards Continually Learning Application Performance Models

    Full text link
    Machine learning-based performance models are increasingly being used to build critical job scheduling and application optimization decisions. Traditionally, these models assume that data distribution does not change as more samples are collected over time. However, owing to the complexity and heterogeneity of production HPC systems, they are susceptible to hardware degradation, replacement, and/or software patches, which can lead to drift in the data distribution that can adversely affect the performance models. To this end, we develop continually learning performance models that account for the distribution drift, alleviate catastrophic forgetting, and improve generalizability. Our best model was able to retain accuracy, regardless of having to learn the new distribution of data inflicted by system changes, while demonstrating a 2x improvement in the prediction accuracy of the whole data sequence in comparison to the naive approach.Comment: Presented at Workshop on Machine Learning for Systems at 36th Conference on Neural Information Processing Systems (NeurIPS 2022

    Mechanism of ribosome rescue by ArfA and RF2

    Get PDF
    ArfA rescues ribosomes stalled on truncated mRNAs by recruiting release factor RF2, which normally binds stop codons to catalyze peptide release. We report two 3.2 A resolution cryo-EM structures - determined from a single sample - of the 70S ribosome with ArfA*RF2 in the A site. In both states, the ArfA C-terminus occupies the mRNA tunnel downstream of the A site. One state contains a compact inactive RF2 conformation. Ordering of the ArfA N-terminus in the second state rearranges RF2 into an extended conformation that docks the catalytic GGQ motif into the peptidyl-transferase center. Our work thus reveals the structural dynamics of ribosome rescue. The structures demonstrate how ArfA \u27senses\u27 the vacant mRNA tunnel and activates RF2 to mediate peptide release without a stop codon, allowing stalled ribosomes to be recycled

    Ribosome*RelA structures reveal the mechanism of stringent response activation

    Get PDF
    Stringent response is a conserved bacterial stress response underlying virulence and antibiotic resistance. RelA/SpoT-homolog proteins synthesize transcriptional modulators (p)ppGpp, allowing bacteria to adapt to stress. RelA is activated during amino-acid starvation, when cognate deacyl-tRNA binds to the ribosomal A (aminoacyl-tRNA) site. We report four cryo-EM structures of E. coli RelA bound to the 70S ribosome, in the absence and presence of deacyl-tRNA accommodating in the 30S A site. The boomerang-shaped RelA with a wingspan of more than 100 A wraps around the A/R (30S A-site/RelA-bound) tRNA. The CCA end of the A/R tRNA pins the central TGS domain against the 30S subunit, presenting the (p)ppGpp-synthetase domain near the 30S spur. The ribosome and A/R tRNA are captured in three conformations, revealing hitherto elusive states of tRNA engagement with the ribosomal decoding center. Decoding-center rearrangements are coupled with the step-wise 30S-subunit \u27closure\u27, providing insights into the dynamics of high-fidelity tRNA decoding

    Use of Energy Consumption during Milling to Fill a Measurement Gap in Hybrid Additive Manufacturing

    Get PDF
    Coupling additive manufacturing (AM) with interlayer peening introduces bulk anisotropic properties within a build across several centimeters. Current methods to map high resolution anisotropy and heterogeneity are either destructive or have a limited penetration depth using a nondestructive method. An alternative pseudo-nondestructive method to map high-resolution anisotropy and heterogeneity is through energy consumption during milling. Previous research has shown energy consumption during milling correlates with surface integrity. Since surface milling of additively manufactured parts is often required for post-processing to improve dimensional accuracy, an opportunity is available to use surface milling as an alternative method to measure mechanical properties and build quality. The variation of energy consumption during the machining of additive parts, as well as hybrid AM parts, is poorly understood. In this study, the use of net cutting specific energy was proposed as a suitable metric for measuring mechanical properties after interlayer ultrasonic peening of 316 stainless steel. Energy consumption was mapped throughout half of a cuboidal build volume. Results indicated the variation of net cutting specific energy increased farther away from the surface and was higher for hybrid AM compared to as-printed and wrought. The average lateral and layer variation of the net cutting specific energy for printed samples was 81% higher than the control, which indicated a significantly higher degree of heterogeneity. Further, it was found that energy consumption was an effective process signature exhibiting strong correlations with microhardness. Anisotropy based on residual strains were measured using net cutting specific energy and validated by hole drilling. The proposed technique contributes to filling part of the measure gap in hybrid additive manufacturing and capitalizes on the preexisting need for machining of AM parts to achieve both goals of surface finish and quality assessment in one milling operation

    Accelerated Sizing of a Power Split Electrified Powertrain

    Get PDF
    Component sizing generally represents a demanding and time-consuming task in the development process of electrified powertrains. A couple of processes are available in literature for sizing the hybrid electric vehicle (HEV) components. These processes employ either time-consuming global optimization techniques like dynamic programming (DP) or near-optimal techniques that require iterative and uncertain tuning of evaluation parameters like the Pontryagin's minimum principle (PMP). Recently, a novel near-optimal technique has been devised for rapidly predicting the optimal fuel economy benchmark of design options for electrified powertrains. This method, named slope-weighted energy-based rapid control analysis (SERCA), has been demonstrated producing results comparable to DP, while limiting the associated computational time by near two orders of magnitude. In this paper, sizing parameters for a power split electrified powertrain are considered that include the internal combustion engine size, the two electric motor/generator sizes, the transmission ratios, and the final drive ratio. The SERCA approach is adopted to rapidly evaluate the fuel economy capabilities of each sizing option in various driving missions considering both type-approval drive cycles and real-world driving profiles. While screening out for optimal sizing options, the implemented methodology includes drivability criteria along with fuel economy potential. Obtained results will demonstrate the agility of the developed sizing tool in identifying optimal sizing options compared to state-of-the-art sizing tools for electrified powertrains
    • …
    corecore