28 research outputs found

    Angular emission properties of a layer of rare-earth based nanophosphors embedded in one-dimensional photonic crystal coatings

    Get PDF
    The angular properties of light emitted from rare-earth based nanophosphors embedded in optical resonators built in one-dimensional photonic crystal coatings are herein investigated. Strong directional dependence of the photoluminescence spectra is found. Abrupt angular variations of the enhancement caused by the photonic structure and the extraction power are observed, in good agreement with calculated polar emission patterns. Our results confirm that the optical cavity favors the extraction of different wavelengths at different angles and that integration of nanophosphors within photonic crystals provides control over the directional emission properties that could be put into practice in phosphorescent displays.Fil: Sánchez Sobrado, O.. Universidad de Sevilla. Consejo Superior de Investigaciones Cientificas. Instituto de Ciencia de Materiales de Sevilla; EspañaFil: Yacomotti, A. M.. No especifíca;Fil: Calvo, M. E.. Universidad de Sevilla. Consejo Superior de Investigaciones Cientificas. Instituto de Ciencia de Materiales de Sevilla; EspañaFil: Martinez, Oscar Eduardo. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Ocaña, M.. Universidad de Sevilla. Consejo Superior de Investigaciones Cientificas. Instituto de Ciencia de Materiales de Sevilla; EspañaFil: Núñez, N.. Universidad de Sevilla. Consejo Superior de Investigaciones Cientificas. Instituto de Ciencia de Materiales de Sevilla; EspañaFil: Levenson, J. A.. No especifíca;Fil: Míguez, H.. Universidad de Sevilla. Consejo Superior de Investigaciones Cientificas. Instituto de Ciencia de Materiales de Sevilla; Españ

    Regenerative memory in time-delayed neuromorphic photonic resonators

    Get PDF
    We investigate a photonic regenerative memory based upon a neuromorphic oscillator with a delayed self-feedback (autaptic) connection. We disclose the existence of a unique temporal response characteristic of localized structures enabling an ideal support for bits in an optical buffer memory for storage and reshaping of data information. We link our experimental implementation, based upon a nanoscale nonlinear resonant tunneling diode driving a laser, to the paradigm of neuronal activity, the FitzHugh-Nagumo model with delayed feedback. This proof-of-concept photonic regenerative memory might constitute a building block for a new class of neuron-inspired photonic memories that can handle high bit-rate optical signals

    Localization control of few-photon states in parity-symmetric \u27photonic molecules\u27 under balanced pumping

    No full text
    © 2018 The Author(s). Published by IOP Publishing Ltd on behalf of Deutsche Physikalische Gesellschaft. We theoretically investigate the problem of localization control of few-photon states in driven-dissipative parity-symmetric photonic molecules. Photonic molecules are multi-cavity photonic systems. We show that a quantum feedback loop can utilize the information of the spontaneously-emitted photons from each cavity to induce asymmetric photon population in the cavities, while maintaining a balanced pump that respects parity symmetry. To better understand the system\u27s behavior, we characterize the degree of asymmetry as a function of the coupling between the two optical cavities. Contrary to intuitive expectations, we find that in some regimes the coupling can enhance the population asymmetry. We also show that these results are robust against experimental imperfections and limitations such as detection efficiency

    Semiconductor lasers coupled face-to-face

    No full text
    We show that for a large coupling time, semiconductor lasers coupled face-to-face exhibit a fast dynamics and a slow stairs-like periodic modulation. The effect can be explained by the nonlinear response of semiconductor lasers to external injection and a breakup of subnanosecond synchronization.info:eu-repo/semantics/publishe
    corecore