121 research outputs found

    Why hyperbolic theories of dissipation cannot be ignored: Comments on a paper by Kostadt and Liu

    Get PDF
    Contrary to what is asserted in a recent paper by Kostadt and Liu ("Causality and stability of the relativistic diffusion equation"), experiments can tell apart (and in fact do) hyperbolic theories from parabolic theories of dissipation. It is stressed that the existence of a non--negligible relaxation time does not imply for the system to be out of the hydrodynamic regime.Comment: 8 pages Latex, to appear in Phys.Rev.

    Quantum fluids of light

    Full text link
    This article reviews recent theoretical and experimental advances in the fundamental understanding and active control of quantum fluids of light in nonlinear optical systems. In presence of effective photon-photon interactions induced by the optical nonlinearity of the medium, a many-photon system can behave collectively as a quantum fluid with a number of novel features stemming from its intrinsically non-equilibrium nature. We present a rich variety of photon hydrodynamical effects that have been recently observed, from the superfluid flow around a defect at low speeds, to the appearance of a Mach-Cherenkov cone in a supersonic flow, to the hydrodynamic formation of topological excitations such as quantized vortices and dark solitons at the surface of large impenetrable obstacles. While our review is mostly focused on a class of semiconductor systems that have been extensively studied in recent years (namely planar semiconductor microcavities in the strong light-matter coupling regime having cavity polaritons as elementary excitations), the very concept of quantum fluids of light applies to a broad spectrum of systems, ranging from bulk nonlinear crystals, to atomic clouds embedded in optical fibers and cavities, to photonic crystal cavities, to superconducting quantum circuits based on Josephson junctions. The conclusive part of our article is devoted to a review of the exciting perspectives to achieve strongly correlated photon gases. In particular, we present different mechanisms to obtain efficient photon blockade, we discuss the novel quantum phases that are expected to appear in arrays of strongly nonlinear cavities, and we point out the rich phenomenology offered by the implementation of artificial gauge fields for photons.Comment: Accepted for publication on Rev. Mod. Phys. (in press, 2012

    Social status and satisfaction of the phlebosurgical patient

    Get PDF
    The purpose of the study is to give a medical and social characteristic of patients treated for chronic diseases of the veins of the lower extremities in an outpatient phlebological center.Цель исследования – дать медико-социальную характеристику пациентов, лечившихся по поводу хронических заболеваний вен нижних конечностей в амбулаторном флебологическом центре

    Vygotsky in English: What Still Needs to Be Done

    Get PDF
    At present readers of English have still limited access to Vygotsky’s writings. Existing translations are marred by mistakes and outright falsifications. Analyses of Vygotsky’s work tend to downplay the collaborative and experimental nature of his research. Several suggestions are made to improve this situation. New translations are certainly needed and new analyses should pay attention to the contextual nature of Vygotsky’s thinking and research practice

    Allosteric Indole Amide Inhibitors of p97: Identification of a Novel Probe of the Ubiquitin Pathway

    Get PDF
    A high-throughput screen to discover inhibitors of p97 ATPase activity identified an indole amide that bound to an allosteric site of the protein. Medicinal chemistry optimization led to improvements in potency and solubility. Indole amide 3 represents a novel uncompetitive inhibitor with excellent physical and pharmaceutical properties that can be used as a starting point for drug discovery efforts
    corecore