4,564 research outputs found

    Emission of Massive Scalar Fields by a Higher-Dimensional Rotating Black-Hole

    Full text link
    We perform a comprehensive study of the emission of massive scalar fields by a higher-dimensional, simply rotating black hole both in the bulk and on the brane. We derive approximate, analytic results as well as exact numerical ones for the absorption probability, and demonstrate that the two sets agree very well in the low and intermediate-energy regime for scalar fields with mass m_\Phi < 1 TeV in the bulk and m_\Phi < 0.5 TeV on the brane. The numerical values of the absorption probability are then used to derive the Hawking radiation power emission spectra in terms of the number of extra dimensions, angular-momentum of the black hole and mass of the emitted field. We compute the total emissivities in the bulk and on the brane, and demonstrate that, although the brane channel remains the dominant one, the bulk-over-brane energy ratio is considerably increased (up to 33%) when the mass of the emitted field is taken into account.Comment: 28 pages, 18 figure

    Quantum Sensor Miniaturization

    Full text link
    The classical bound on image resolution defined by the Rayleigh limit can be beaten by exploiting the properties of quantum mechanical entanglement. If entangled photons are used as signal states, the best possible resolution is instead given by the Heisenberg limit, an improvement proportional to the number of entangled photons in the signal. In this paper we present a novel application of entanglement by showing that the resolution obtained by an imaging system utilizing separable photons can be achieved by an imaging system making use of entangled photons, but with the advantage of a smaller aperture, thus resulting in a smaller and lighter system. This can be especially valuable in satellite imaging where weight and size play a vital role.Comment: 3 pages, 1 figure. Accepted for publication in Photonics Technology Letter

    Evaluation of a Multi-Parameter Sensor for Automated, Continuous Cell Culture Monitoring in Bioreactors

    Get PDF
    Compact and automated sensors are desired for assessing the health of cell cultures in biotechnology experiments in microgravity. Measurement of cell culture medium allows for the optirn.jzation of culture conditions on orbit to maximize cell growth and minimize unnecessary exchange of medium. While several discrete sensors exist to measure culture health, a multi-parameter sensor would simplify the experimental apparatus. One such sensor, the Paratrend 7, consists of three optical fibers for measuring pH, dissolved oxygen (p02), dissolved carbon dioxide (pC02) , and a thermocouple to measure temperature. The sensor bundle was designed for intra-arterial placement in clinical patients, and potentially can be used in NASA's Space Shuttle and International Space Station biotechnology program bioreactors. Methods: A Paratrend 7 sensor was placed at the outlet of a rotating-wall perfused vessel bioreactor system inoculated with BHK-21 (baby hamster kidney) cells. Cell culture medium (GTSF-2, composed of 40% minimum essential medium, 60% L-15 Leibovitz medium) was manually measured using a bench top blood gas analyzer (BGA, Ciba-Corning). Results: A Paratrend 7 sensor was used over a long-term (>120 day) cell culture experiment. The sensor was able to track changes in cell medium pH, p02, and pC02 due to the consumption of nutrients by the BHK-21. When compared to manually obtained BGA measurements, the sensor had good agreement for pH, p02, and pC02 with bias [and precision] of 0.02 [0.15], 1 mm Hg [18 mm Hg], and -4.0 mm Hg [8.0 mm Hg] respectively. The Paratrend oxygen sensor was recalibrated (offset) periodically due to drift. The bias for the raw (no offset or recalibration) oxygen measurements was 42 mm Hg [38 mm Hg]. The measured response (rise) time of the sensor was 20 +/- 4s for pH, 81 +/- 53s for pC02, 51 +/- 20s for p02. For long-term cell culture measurements, these response times are more than adequate. Based on these findings , the Paratrend sensor could offer automated, continuous monitoring of cell cultures with a temporal resolution of 1 minute, which is not attainable by sampling via handheld blood analyzer (i-STAT). Conclusion: The resulting bias and precision found in these cell culture-based studies is comparable to Paratrend sensor clinical results. Although the large error in p02 measurements (+/-18 mm Hg) may be acceptable for clinical applications, where Paratrend values are periodically adjusted to a BGA measurement, the O2 sensor in this bundle may not be reliable enough for the single-calibration requirement of sensors used in NASA's bioreactors. The pH and pC02 sensors in the bundle are reliable and stable over the measurement period, and can be used without recalibration to measure cell cultures in rn.jcrogravity biotechnology experiments. Future work will test additional Paratrend sensors to provide statistical assessment of sensor performance

    Faithful transformation of quasi-isotropic to Weyl-Papapetrou coordinates: A prerequisite to compare metrics

    Full text link
    We demonstrate how one should transform correctly quasi-isotropic coordinates to Weyl-Papapetrou coordinates in order to compare the metric around a rotating star that has been constructed numerically in the former coordinates with an axially symmetric stationary metric that is given through an analytical form in the latter coordinates. Since a stationary metric associated with an isolated object that is built numerically partly refers to a non-vacuum solution (interior of the star) the transformation of its coordinates to Weyl-Papapetrou coordinates, which are usually used to describe vacuum axisymmetric and stationary solutions of Einstein equations, is not straightforward in the non-vacuum region. If this point is \textit{not} taken into consideration, one may end up to erroneous conclusions about how well a specific analytical metric matches the metric around the star, due to fallacious coordinate transformations.Comment: 18 pages, 2 figure

    On p-adic lattices and Grassmannians

    Full text link
    It is well-known that the coset spaces G(k((z)))/G(k[[z]]), for a reductive group G over a field k, carry the geometric structure of an inductive limit of projective k-schemes. This k-ind-scheme is known as the affine Grassmannian for G. From the point of view of number theory it would be interesting to obtain an analogous geometric interpretation of quotients of the form G(W(k)[1/p])/G(W(k)), where p is a rational prime, W denotes the ring scheme of p-typical Witt vectors, k is a perfect field of characteristic p and G is a reductive group scheme over W(k). The present paper is an attempt to describe which constructions carry over from the function field case to the p-adic case, more precisely to the situation of the p-adic affine Grassmannian for the special linear group G=SL_n. We start with a description of the R-valued points of the p-adic affine Grassmannian for SL_n in terms of lattices over W(R), where R is a perfect k-algebra. In order to obtain a link with geometry we further construct projective k-subvarieties of the multigraded Hilbert scheme which map equivariantly to the p-adic affine Grassmannian. The images of these morphisms play the role of Schubert varieties in the p-adic setting. Further, for any reduced k-algebra R these morphisms induce bijective maps between the sets of R-valued points of the respective open orbits in the multigraded Hilbert scheme and the corresponding Schubert cells of the p-adic affine Grassmannian for SL_n.Comment: 36 pages. This is a thorough revision, in the form accepted by Math. Zeitschrift, of the previously published preprint "On p-adic loop groups and Grassmannians

    Processing and Linking Audio Events in Large Multimedia Archives: The EU inEvent Project

    Get PDF
    In the inEvent EU project [1], we aim at structuring, retrieving, and sharing large archives of networked, and dynamically changing, multimedia recordings, mainly consisting of meetings, videoconferences, and lectures. More specifically, we are developing an integrated system that performs audiovisual processing of multimedia recordings, and labels them in terms of interconnected “hyper-events ” (a notion inspired from hyper-texts). Each hyper-event is composed of simpler facets, including audio-video recordings and metadata, which are then easier to search, retrieve and share. In the present paper, we mainly cover the audio processing aspects of the system, including speech recognition, speaker diarization and linking (across recordings), the use of these features for hyper-event indexing and recommendation, and the search portal. We present initial results for feature extraction from lecture recordings using the TED talks. Index Terms: Networked multimedia events; audio processing: speech recognition; speaker diarization and linking; multimedia indexing and searching; hyper-events. 1

    Superpixel-based statistical anomaly detection for sense and avoid

    Get PDF

    Fair Robust Assignment Using Redundancy

    Get PDF
    We study the consideration of fairness in redundant assignment for multi-agent task allocation. It has recently been shown that redundant assignment of agents to tasks provides robustness to uncertainty in task performance. However, the question of how to fairly assign these redundant resources across tasks remains unaddressed. In this paper, we present a novel problem formulation for fair redundant task allocation, in which we cast it as the optimization of worst-case task costs. Solving this problem optimally is NP-hard. Therefore, we exploit properties of supermodularity to propose a polynomial-time, near-optimal solution. Our algorithm provides a solution set that is α times larger than the optimal set size in order to guarantee a solution cost at least as good as the optimal target cost. We derive the sub- optimality bound on this cardinality relaxation, α. Additionally, we demonstrate that our algorithm performs near-optimally without the cardinality relaxation. We show the algorithm in simulations of redundant assignments of robots to goal nodes on transport networks with uncertain travel times. Empirically, our algorithm outperforms benchmarks, scales to large problems, and provides improvements in both fairness and average utility.We gratefully acknowledge the support from ARL Grant DCIST CRA W911NF-17-2-0181, NSF Grant CNS-1521617, ARO Grant W911NF-13-1- 0350, ONR Grants N00014-20-1-2822 and ONR grant N00014-20-S-B001, and Qualcomm Research. The first author acknowledges support from the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1845298
    corecore