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SUPERPIXEL-BASED STATISTICAL ANOMALY DETECTION FOR SENSE AND AVOID
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ABSTRACT

This paper presents a novel preprocessing method for
detecting small objects of interest within a high-resolution
image, applied to the problem of visually detecting possible
aircraft collisions (Sense and Avoid) for UAV platforms. The
method is based on superpixel image segmentation combined
with subsequent statistical analysis and anomaly detection.
The existence of a possible target within a superpixel is de-
scribed in terms of how it affects the local superpixel statistics
and this signature statistical profile is consequently used to
identify regions of interest throughout the image. The ap-
proach eliminates upwards of 90% of the total image area,
significantly reducing the workload of further processing
stages.

Index Terms— Superpixels, Anomaly Detection, Sense
and Avoid, Statistical Detector

1. INTRODUCTION

A commonly encountered and challenging scenario in image
analysis is the detection of a small target present in a compar-
atively much larger and cluttered image. A lack of informa-
tion about the exact visual properties of the target of interest
can make this task significantly more challenging. Such a
problem can be viewed as an anomaly detection task, where
an anomaly is defined as an otherwise unspecified object that
stands out from its background, i.e. differs from the immedi-
ate context in which it finds itself [1].

Anomaly detection typically refers to the task of detect-
ing events and objects within a dataset that do not conform to
expected patterns and behaviours. In the field of image pro-
cessing, such methods have previously been used to tackle the
aforementioned problem of detecting small targets in high-
resolution remote sensing data. Notable examples of anomaly
detection applied to hyperspectral images include Stein et al.
[2] and Theiler and Prasad’s context-dependent detector [1].

This paper presents a general approach to tackling such
detection problems using superpixels instead of previously
used segmentation methods like HierArchitect [1], with an
example case study drawn from the problem of visual Sense
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and Avoid for Unmanned Aerial Vehicles. Sense and Avoid
refers to the process of detecting and avoiding a possible colli-
sion with another object (such as another aircraft). In the field
of UAVs, this problem is of prime importance since there is
no human pilot present. In order to enable fully autonomous
UAVs to be employed in a variety of civilian applications in
both controlled and uncontrolled airspace, an automated sys-
tem for detecting and avoiding collisions is required [3].

Sense and Avoid can generally be performed using a
plethora of modalities, including cooperative systems such
as TCAS as well as non-cooperative methods such as radar
and passive imaging sensors. The comparatively low cost,
weight and power consumption of visual sensors makes them
particularly suited for usage on small, civilian UAVs. For an
in-depth discussion of these modalities, along with a general
literature review on Sense and Avoid systems, the reader is
directed to [4].

Previous approaches to visual Sense and Avoid have em-
ployed tiered processing systems, starting with a preprocess-
ing step to identify possible targets/regions of interest through
the image, followed by more elaborate object recognition and
tracking algorithms. The two best known systems proposed
in the literature [5] [6] employ simple morphological filtering
for preprocessing. Operations such as the top-hat, bottom-
hat and close-minus-open filter can be used to detect small
regions of contrast difference, i.e. potential targets that dif-
fer in contrast from the local background. The usage of such
filters requires assumptions about the target size, shape and
contrast relative to background. In complex natural images,
these methods are likely to detect, besides the targets of inter-
est, a very large number of spurious artefacts.

Viewing the Sense and Avoid preprocessing task in terms
of image anomaly detection, our approach employs homo-
geneous local neighbourhoods derived from SLIC superpixel
segmentation. Anomalies of interest are now superpixels con-
taining a possible target, the presence of which affects their
local statistics and differentiates them from the remaining ma-
jority of homogeneous superpixels which can be discarded
from any further processing stages.

The paper is organised as follows: Section 2 provides
a discussion on superpixel segmentation and Section 3 de-
scribes the statistical detector approach. Section 4 presents
results of the aforementioned method along with a relevant
discussion with the conclusion found in Section 5.



2. SUPERPIXEL SEGMENTATION

Superpixels are a form of image over-segmentation; they are
essentially clusters of perceptually similar pixels that capture
the redundancy inherent in natural images. They can provide
a perceptually more meaningful alternative to the pixel grid.
Superpixels can act as a convenient primitive for further im-
age processing tasks, having the potential to significantly re-
duce overall algorithm complexity.

Various superpixel methods have been proposed in the
literature and consequently employed in a number of image
processing and computer vision applications, including im-
age and video segmentation [7] [8], object localisation [9] and
tracking [10].

As there is no rigorous definition of what constitutes a su-
perpixel, the results of these algorithms can vary in segmen-
tation quality, superpixel uniformity, size and number. One
of the most widely used algorithms, proposed by Achanta et
al. is Simple Linear Iterative Clustering (SLIC); a description
of SLIC superpixels and comparison to other state-of-the-art
methods can be found in [7].

SLIC, chosen for the work described here, performs iter-
ative clustering in a fashion similar to k-means clustering [7].
The image is segmented into superpixels, whose total num-
ber (k) is defined by the user. The segmentation process is
governed by a 5-dimensional distance metric combining spa-
tial (x,y coordinates) and colour information (L,a,b, of the
CIELAB colorspace). The distance between cluster centre
(Ck) and a pixel i is shown in the equations below.

dlab =
√

(lk − li)2 + (ak − ai)2 + (bk − bi)2 (1)

dxy =
√

(xk − xi)2 + (yk − yi)2 (2)

Ds = dlab +
m

S
dxy (3)

The spatial component of the metric can dominate the end
result when dealing with large superpixels (due to high image
resolution or low k) and hence a scaling factor is introduced as
m
S , where S is the initial cluster seed grid interval (dependent
on image size and desired k) and m allows the user to control
superpixel compactness and shape regularity.

Advantages of SLIC superpixels include high perceptual
homogeneity within each superpixel, relative uniformity in
size and shape, computational simplicity and efficiency as
well as a degree of user control over the process. They also
perform well in terms of standard boundary recall and under-
segmentation error measures and can cope with both colour
and grayscale imagery [7].

The approach described in this paper utilises superpixels
in a semantically different context, where they are viewed not
so much as primitives composing an image but more as an
alternative paradigm to classic rectangular neighbourhoods.
Neighbourhood operations are incredibly common in image

Fig. 1. Example of an aircraft target contained within a larger
superpixel.

processing and are typically performed over a rectangular
window of arbitrary size, centred on the pixel or coefficient
of interest. We here consider a pixel’s local neighbourhood
to be the superpixel it belongs to; neighbourhood operations
are performed according to the values of the pixels within a
superpixel instead of the pixels in a strictly defined grid.

In the context of our problem, superpixel neighbourhoods
can be beneficial since a homogeneous local background will
cause possible targets to be more readily distinguished.

3. THE SUPERPIXEL STATISTICAL DETECTOR

Our preprocessing approach relies on segmenting the image
into superpixels whose size is significantly larger than the ex-
pected size of the target of interest; in our case, an approach-
ing aircraft. The minimum allowed SLIC superpixel size is
set at such a threshold that any target will be too small to
form a superpixel by itself and will instead appear contained,
along with its local background, in a much larger superpixel
(Fig. 1). Only approximate knowledge of the target size is
required; we have found superpixel size selection to be rather
lenient, with sizes from one to two orders of magnitude above
the expected target size to work well. The only assumption
made about the target is that it is actually visible, i.e. it is a
collection of pixels that differ in contrast from their immedi-
ate local background.

Since the images of interest are natural images contain-
ing large features such as expanses of sky, clouds or terrain,
the vast majority of the generated superpixels are clusters of
largely uniform pixels, the products of successful SLIC seg-
mentation. However, any target present inside a superpixel
will manifest itself as a “blob” of pixels of differing inten-
sity, disturbing this expected uniformity. The task of finding
potential targets and regions of interest in the image is now re-
duced to finding those superpixels throughout the image that
demonstrate this “statistical anomaly”.



An attempt to formulate this “statistical anomaly” can be-
gin by examining the statistical moments of the pixel values
within a given superpixel, for example measures describing
statistical dispersion such as range, standard deviation σ and
variance σ2 of the constituent intensity values. For example,
a superpixel that is a cluster of perceptually uniform pixels
would be expected to have a relatively low standard devia-
tion. A visible target present inside a superpixel is effectively
a small set of values that differ from their local background to
some extent, as it will appear darker or lighter than the local
background. Such a superpixel would exhibit higher statisti-
cal dispersion than the uniform case and a -by comparison-
higher standard deviation.

Another moment of interest is the sample kurtosis (Eq. 4).
A superpixel that does not contain a target is likely to be
largely uniform, having a relatively flat (platykurtic) distri-
bution and hence relatively low kurtosis. The presence of
a target will disturb this uniformity resulting in a distribu-
tion among the superpixel that is much “peakier” and exhibits
heavy tails and a relatively high sample kurtosis. It should be
noted that the superpixel kurtosis values themselves follow a
heavy-tailed distribution (Fig. 2); the majority of superpixels
have scores just under the global average with a handful of
extremely high-scoring outliers.

g2 =
m4

m2
2

=

1
n

n∑
i=1

(xi − x̄)4

( 1
n

n∑
i=1

(xi − x̄)2)2
(4)

As implied above, our interest lies not in estimating the
exact standard deviation and kurtosis values within superpix-
els but rather in how they relate to the values of other super-
pixels in the image. Statistical variations can help identify
superpixels that may contain a target and differentiate them
from the much more uniform ones that can be safely discarded
from further processing.

The problem of deciding whether a superpixel contains a
possible target or not can be viewed as a composite hypothesis
testing problem, where the distributions describing each hy-
pothesis are only partially known. The previously discussed
superpixel statistics can inform as to the formulation of the
hypotheses describing the case of a largely uniform super-
pixel, unlikely to contain a target of interest (H0) and a lep-
tokurtic superpixel containing a possible target (H1).

One of the most common methods employed when faced
with such a composite hypothesis testing problem is that of a
Generalised Likelihood Ratio Test [11] shown in Eq. 5. As
the parameter spaces of the distributions describing the two
hypotheses are not fully known they need to be estimated us-
ing Maximum Likelihood Estimation on the dataset of interest
(i.e. the intensity values contained in the superpixel).

LG(x) =
p(x; θ̂1, H1)

p(x; θ̂0, H0)
> γ (5)

Fig. 2. Normal Probability Plot for the calculated sample kur-
tosis values of 2000 superpixels throughout an image, demon-
strating the rarity of a much-higher-than-average result.

Taking the expectation of “high kurtosis” in the presence
of a target, we can model the largely homogeneous case of
H0 as a relatively flat distribution, for example the Uniform
distribution. If a possible target is present in a superpixel then
it will not be as homogeneous and its statistics would bet-
ter match a much more leptokurtic distribution. H1 is hence
defined as a superpixel following the Generalised Extreme
Value Distribution (pdf shown in Eq. 6 and 7).

GEV pdf =
1

σ
t(x)ξ+1e−t(x) (6)

t(x) =

{
(1 + (x−µσ )ξ)−1/ξ if ξ 6= 0

e−(x−µ)/σ if ξ = 0
(7)

The GEV distribution is chosen as one of many possible
leptokurtic candidates, others being the Cauchy or the Gener-
alised Laplacian distributions. Our interest again lies not so
much in how well this distribution fits a target containing su-
perpixel but more in the contrasting relationship between an
extremely platykurtic and an extremely leptokurtic distribu-
tion.

The above metrics are just some examples of the many
possible identifiers of an anomalous superpixel; one may wish
to employ one or more of these as well as any new met-
rics (such as skewness, Kolmogorov-Smirnov tests, the Ma-
halanobis distance) according to knowledge of the problem-
specific data.

4. RESULTS

Our Statistical Superpixel Detector has been tested on a num-
ber of frames from 3 sequences of field-recorded data pro-
vided by THALES UK, a sample frame of which can be seen



in Fig. 3. Our primary aim here is not so much to accurately
detect the target aircraft but instead to eliminate parts of the
image from unnecessary further processing. Table 1 shows
the results of the detector over a series of 30 frames from each
of the 3 datasets. The images have been segmented using the
SLIC algorithm (k = 2000,m = 10) and each frame contains
a single target. Superpixels are characterised according to one
or more the aforementioned metrics and those scoring above
threshold are selected for further processing (those discarded
have been masked out for ease of representation). To illustrate
the robustness of the approach in terms of superpixel size, we
include dataset 3*, a version of dataset 3 segmented into ca.
3500 superpixels per frame.

Dataset 1 2 3 3*
Total Superpixels 58500 58600 58496 104491
Detected Superpixels 4153 5371 7129 14624
Detected Targets 30/30 30/30 30/30 30/30

Table 1. Results of detector over series of frames. Range and
kurtosis threshold set at global average.

Our approach delivers excellent results, with the reduc-
tion in image area of interest often being in excess of 90%.
The target superpixel is retained on all frames together with
a few false positives (usually caused by small cloud forma-
tions). This results in a significantly lower number of detec-
tions per frame when compared to morphological filtering.
Our detector selects about 10% of the created superpixels per
frame (consequently, 10% of the total image area given the
relative size uniformity of the superpixels), even when thresh-
olds are set at a conservative global average. By comparison,
a close-minus-open operation with an appropriate structuring
element applied to samples from all 3 datasets marked pixels
corresponding to (on average) 47% of the image area.

The significant reduction in image area of interest greatly
reduces the load of further processing stages. A variety of
methods (such as deformable template matching) can then be
employed to easily distinguish between the actual target and
any false positives.

Algorithm performance is of course dependent on thresh-
old selection. Statistical dispersion and kurtosis thresholds set
at the global average can be considered conservative as the
superpixels of interest produce values that lie deep into the
right-hand tails of the global distribution, as discussed previ-
ously. A GLRT threshold of 1 can also be considered conser-
vative as a non-uniform superpixel is certain to be closer to
H1 than to the uniform distribution of H0.

On most datasets the selection thresholds can be increased
to multiples of the global average to select values lying in the
upper quartile of the distribution, typically resulting in a re-
duction of false positives while maintaining target detection.
Such thresholds are of course heavily data dependent and are
most safely derived in an experimental, application specific
fashion.

5. CONCLUSION

This paper has introduced a statistical anomaly detection-
inspired framework for the detection of small targets in clut-
tered images using superpixel neighbourhoods. The approach
is demonstrated as a preprocessing step in the Sense and
Avoid problem, where it has been shown to greatly reduce the
image search area while maintaining the target of interest.

(a) Original Image

(b) SLIC Segmentation

(c) Selected Superpixels

Fig. 3. Target detection in sample image from Dataset 2, k =
2000. Standard deviation threshold at global average, kurtosis
threshold at x2 the global average.
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