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Fair Robust Assignment using Redundancy
Matthew Malencia1,2, Vijay Kumar1, George Pappas1, and Amanda Prorok2

Abstract—We study the consideration of fairness in redundant
assignment for multi-agent task allocation. It has recently been
shown that redundant assignment of agents to tasks provides
robustness to uncertainty in task performance. However, the
question of how to fairly assign these redundant resources across
tasks remains unaddressed. In this paper, we present a novel
problem formulation for fair redundant task allocation, which
we cast as the optimization of worst-case task costs under a
cardinality constraint. Solving this problem optimally is NP-
hard. We exploit properties of supermodularity to propose a
polynomial-time, near-optimal solution. In supermodular redun-
dant assignment, the use of additional agents always improves
task costs. Therefore, we provide a solution set that is α
times larger than the cardinality constraint. This constraint
relaxation enables our approach to achieve a super-optimal cost
by using a sub-optimal assignment size. We derive the sub-
optimality bound on this cardinality relaxation, α. Additionally,
we demonstrate that our algorithm performs near-optimally
without the cardinality relaxation. We show simulations of
redundant assignments of robots to goal nodes on transport
networks with uncertain travel times. Empirically, our algorithm
outperforms benchmarks, scales to large problems, and provides
improvements in both fairness and average utility.

Index Terms—Multi-Robot Systems, Task Planning, Fairness,
Submodular Optimization, Ethics and Philosophy.

I. INTRODUCTION

FAIRNESS in algorithms has received increasing attention
in both research [3, 4, 31] and policy [9, 27, 32]. Multi-

agent task allocation algorithms distribute resources among
human-centric tasks, thus requiring the consideration of fair-
ness. Bias in these systems has myriad sources, such as design
choices [18], models and data [17], and interpretation of results
[8]. In this paper, we focus on the fairness of the objective
function. We reevaluate the objective function of redundant
multi-agent task allocation under the consideration of fairness
and propose an algorithm for solving for this fair objective.

Multi-agent task allocation is studied across domains rang-
ing from operations research to robotics [10, 20, 35]. Because
finding optimal allocations in this combinatorial problem
is challenging, most approaches assume deterministic costs.
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Fig. 1. Redundant assignment answers the question, which task should receive
extra resources? Given an existing non-redundant assignment and respective
cost distributions (top right), a single redundant robot, Robot 2, can be
assigned to either task. Utilitarian approaches assign Robot 2 to Person 0
because of the higher improvement in cost (plot A), whereas fair approaches
assign Robot 2 to Person 1 because of their higher need (plot B).

However, real-world costs are uncertain. For example, in
assigning agents to spatially located goals, travel times and
agent locations are not deterministic [25]. To account for this
uncertainty, previous approaches define risk-based objective
functions [37] or use risk constraints [35]. In recent work,
Prorok shows that redundant assignment provides robust-
ness against uncertainty and is complementary to existing
approaches [24]. For example, in time-sensitive applications
such as rescue scenarios and robots delivering life saving
supplies [1], redundancy improves performance because tasks
are completed by the first robot to arrive based on the first-
come first-to-serve principle [24].

The redundant assignment problem is classified as Single-
Task Robots, Multi-Robot Tasks with Instantaneous Assign-
ment (ST-MR-IA) because each robot can complete all tasks
(ST) and multiple robots can be assigned to the same task
(MR) [12]. This problem can be cast as a set-partitioning
problem which has been proven to be strongly NP-hard [11].
ST-MR-IA problems require a global optimization function.
Traditional methods that optimize utilitarian welfare [13] (the
expected sum of costs) provide no guarantees for individual
fairness [26]. Figure 1 shows that utilitarian approaches seek
the best absolute improvement in task cost without accounting
for individual task needs. In human-centric applications such
as rescue scenarios, delivery systems, and ride-sharing, dis-
parities in task performance yield disparities in the treatment
of individual people. This unfairness in utilitarian assignments
makes the system unfit with respect to broader social structures
and causes a lack of trust in the system. For this reason, it is
crucial to consider fair optimization objectives.

Fairness in redundant assignment is an especially important
consideration because the tasks served in these allocation
problems are often both human-centric and high-risk. For
example, in rescue scenarios such as robots delivering life
saving supplies, the choice of how robots are allocated impacts
how long different individuals must wait for the life saving
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supplies. This allocation strategy stems directly from the
objective function chosen by the system designer.

There exist many definitions of fair objectives [6, 19, 36].
For example, proportional division seeks assignments that
provide agents with equal proportional utility but has no
guarantees for indivisible resources [29], and envy-freeness
seeks assignments such that no agent prefers another agent’s
assignment over its own [2]. While fair objectives are often
intra-personal comparisons, where agents evaluate others’ as-
signments according to their own utility function, experimental
work shows that human behavior is better predicted by inter-
personal comparisons, where agents compare outcomes [14].
For redundant assignment, we seek to minimize the maximum
cost among the set of tasks. Specifically, we answer the
question: how can we find a redundant assignment that is fair
to the worst-off task? Hence, we define an inter-task criteria
based on John Rawls’ veil of ignorance [26].

The ‘veil of ignorance’ thought experiment for the example
of emergency supply delivery is as follows. Imagine you get to
choose the assignment of delivery robots and you will be on
the receiving end of this assignment, i.e., one of the humans
in need of life-saving supplies. However, you are ignorant
of your location. Rawls concludes that, under this veil of
ignorance, the rational conclusion is to choose an assignment
that benefits the person with the longest waiting time, since
this person could be you. This definition of fairness is often
formulated as a minimax or maximin problem [36]. We cast
this problem as the optimization of worst-case expected task
cost.

A. Related Work

Noise and uncertainty in real-world applications require
managing risk (known unknowns) [5, 7, 16]. A common risk
measure is Conditional Value at Risk (CVaR), which is the ex-
pectation of the tail of a distribution. Wilder [33] and Zhou et.
al [37] use CVaR in approaches to submodular optimization.
In addition to risk measures, redundancy provides robustness
to uncertainty. Prorok [24] shows that redundant assignment
improves task performance under uncertainty and is comple-
mentary to traditional risk measures. We leverage redundancy
in this work to maintain the guarantees for satisfying all
constraints of the assignment problem while not precluding
the incorporation of traditional risk measures.

Most assignment problems, as well as many problems in
robotics, optimize the average expected utility. This default ob-
jective is mathematically convenient but has been questioned
under considerations such as fairness. Zhang and Shah [36]
define four maximin fairness criteria for multi-agent Markov
Decision Processes. These definitions of fairness are based on
the Rawlsian theory of justice [26]. The fairness criteria in this
paper similarly applies Rawlsian justice to redundant assign-
ment. Mathematically, this definition is similar to providing
robustness to a worst-case objective. Therefore, we look to
insights from prior work solving minimax problems.

Minimax problems are difficult to solve because they are
highly nonlinear and combinatorial in nature. Uncertainty adds
additional complexity to this problem. Because it is NP-
hard to solve these problems optimally, approaches exploit
mathematical properties of problem formulations to produce

polynomial-time, near-optimal solutions. One such property
is supermodularity, the property of diminishing returns (see
Appendix A). Supermodular objectives (or in many cases,
submodular) can be solved using simple greedy algorithms
with a 1

2 bound on optimality [21]. Many objective functions
are naturally supermodular, such as information gain [28] and
real-world monetary costs [22]. Submodularity has also been
exploited to create robustness to worst-case objectives [15] and
arises naturally in redundant task assignments as it captures
the attribute of diminishing returns [24].

In a closely related work, Krause [15] defines the Robust
Submodular Observation Selection problem, where the goal is
to select an observation set that is robust against the worst-case
of multiple objective functions. This work is grounded in the
example of sensor placement for monitoring an environmental
process. The problem involves finding a set of sensor locations,
A, that is a subset of all possible sensor locations, V . There
exists a set of Jj(A) that measure the variance reduction at
locations j. The objective is to choose k sensor locations
that maximize the minimum variance reduction (equivalent to
minimizing the maximum variance). This problem is formu-
lated as maxA⊆V minj Jj(A) s.t. |A| ≤ k , where each
J1, . . . , JM are normalized monotonic submodular functions.

To solve this problem, Krause [15] proposes the SATURATE
algorithm, which finds an approximate solution by relaxing
the cardinality constraint, with guarantees on this relaxation.
Powers et. al [23] extend this work for any matroid constraint.
They propose the GENERALIZED SATURATION algorithm to
solve this problem by relaxing the objective. They guarantee
that only a fraction of the set of objective functions exceed
a threshold. In contrast to these works, we solve a problem
under both assignment constraints and a cardinality constraint
whereby our algorithm relaxes the constraint on cardinality.

B. Contributions
We propose a novel problem formulation that (for the first

time) formalizes the fair redundant task allocation problem.
Redundancy serves to improve performance under risk. An as-
sumption of supermodularity enables performance guarantees.
Notably, we are the first to develop an algorithm for solving
a fair redundant assignment problem. Our main contributions
are as follows:
• We define the Fair Supermodular Redundant Assignment

Problem as the minimization of the maximum expected
cost across tasks under assignment constraints and cardi-
nality constraints.

• We propose an efficient algorithm to solve the Fair Super-
modular Redundant Assignment problem approximately
by relaxing the cardinality constraint.

• We prove a bound on this relaxation and the computa-
tional complexity of our approach.

We analyze our algorithm in simulation, showcasing our
theory empirically, demonstrating that our algorithm outper-
forms benchmarks, and analyzing a case study to compare the
fairness of our algorithm to prior work.

II. PRELIMINARIES

The problem space in this paper is represented by a graph
B = (U ,F , C). The set of vertices U is partitioned into two
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disjoint sets Ua and Ut, the sets of agent nodes and task nodes,
respectively. The edge set F = {(i, j) | i ∈ Ua, j ∈ Ut, ∀ i, j}
defines all possible agent-task pairings available for assign-
ment. For each (i, j) pair in F , there exists a corresponding
cost Ci,j , which is a random variable. The set of all Ci,j
is the cost set, C. While specific instances of this problem
can constrain C, we make no assumptions on the form,
independence, or correlations of the elements of C.

There are M tasks and N agents, and a total deployment
size, Nd, specified as an input. Each task j has a corresponding
cost function Jj(·) mapping the cost set C to a real number.1

For example, Jj(·) could be the sum, minimum, or product
of the costs Ci,j for agents i assigned to task j. These cost
functions represent how a set of redundant agents complete a
task; the functions map a subset of the assignment to a real
valued cost. In this paper we consider the minimum operator,
representing the first-come first-to-serve principle [24].

Fair assignment seeks a pairing of agents to tasks that
minimizes the maximum task cost, where agents cannot be
assigned multiple tasks, tasks must be assigned at least one
agent, and the number of agents is no more than Nd. This
problem is formulated as finding a subset of the ground set that
minimizes the maximum cost: minA⊆F maxj Jj(A). This
assignment, A, has a constrained cardinality of |A| ≤ Nd, and
assignment constraints per agent and task. The optimization is
formulated with the introduction a second decision variable ξ
and constraint of all Jj(A) by ξ. Finding the minimum ξ such
that all Jj(A) ≤ ξ equivalently minimizes maxj Jj(A).

Definition 1. Fair Assignment: Given N agents and M tasks
with uncertain agent-task assignment costs, find an assignment
A ⊆ F no larger than Nd ≥ M and minimum cost bound
ξ ∈ R, such that no costs Jj(A) exceed ξ. Formally:

min
ξ,A⊆F

ξ

s.t. Jj(A) ≤ ξ, ∀j
|A| ≤ Nd
∀ i, |{j | (i, j) ∈ A}| ≤ 1

∀ j, |{i | (i, j) ∈ A}| ≥ 1

(1)

Fair assignment is a set-partitioning problem and has been
shown to be strongly NP-hard [11]. Approaches that solve
similar problems do not have guarantees on all of these
constraints [37, 38]. To ensure that both assignment constraints
are met and to reduce uncertainty through redundancy, we
define the Fair Supermodular Redundant Assignment problem.

III. PROBLEM STATEMENT

Consider a system of M tasks and N agents, where each
agent-task pairing has random cost, represented by an arbitrary
probability distribution.2 For each of the M tasks, a cost
function is defined. Our goal is to find an assignment that:
• minimizes the maximum task cost,
• uses at most Nd agents,
• assigns each agent to at most one task, and
• ensures no task is unassigned (Nd ≥M ).

1We later assume that all Jj(·) are supermodular.
2Specific instances of this problem can restrict these distributions, but we

make no assumptions on their form, independence, or correlations.

Redundant assignment, where multiple agents can be as-
signed the same task, provides robustness against uncertainty
and improvements to expected performance of tasks [24]. If
tasks have deterministic costs, this problem simplifies to the
linear bottleneck assignment problem which can be solved
using the thresholding algorithm [30]. The presence of uncer-
tainty, however, requires a new approach to this optimization.

This section describes a flexible mathematical formulation
of fair assignment under two assumptions:

Assumptions. (1) all cost functions, Jj(·), must be super-
modular,3 and (2) a prior non-redundant assignment exists.

The first assumption is that all cost functions are super-
modular, i.e., they have the property of diminishing return.
However, we are solving for the maximum of a set of
supermodular functions, which is generally not supermodular
(see Appendix A). Therefore, the greedy algorithm has no
performance guarantees for this problem. Simple examples,
as shown by Krause, prove that the greedy algorithm applied
to this problem can perform arbitrarily badly [15].

The second assumption requires an initial non-redundant
assignment exists, denoted O, such as one found through
standard assignment methods (e.g., threshold algorithm for
the linear bottleneck assignment problem). This assumption
guarantees that all tasks are assigned at least one agent,
thus eliminating this constraint. Additionally, this assumption
enables tractability and ensures the supermodularity of cost
functions (e.g., unassigned tasks potentially have infinite cost,
breaking supermodularity). With this assumption, we focus
strictly on assigning the redundant agents. Therefore, the
ground set becomes F\O, denoted FO. Cost functions remain
denoted Jj(A) though they are a function of A given O.

These two assumptions on Definition 1 yield Problem 1,
the Fair Supermodular Redundant Assignment problem. The
constraint in Definition 1 that all tasks be completed is
guaranteed by the initial assignment (Assumption 2), and
therefore omitted. All cost functions, Jj(A), are assumed to
be supermodular and are a function of A given O.

Problem 1. Fair Supermodular Redundant Assignment: Given
N agents, M tasks with uncertain agent-task assignment costs,
and an initial assignment O, find an assignment A ⊆ FO and
minimum cost bound ξ ∈ R, such that no cost Jj(A) exceeds
ξ, assuming all functions Jj(A) are supermodular. Formally:

min
ξ,A⊆FO

ξ

s.t. Jj(A) ≤ ξ, ∀j
|A| ≤ Nd −M
∀ i, |{j | (i, j) ∈ A ∪O}| ≤ 1

(2)

This formulation is general and flexible enough to be
applied to many assignment problems, as long as the cost func-
tions are supermodular. One such example is the assignment of
agents with uncertain travel times to spatially located tasks. In
this example, the cost at each node is defined as the expected
waiting time, Jj(A) = E

c
[mini {Cij |(i, j) ∈ A ∪O}]. The

minimum operator here represents the first-come first-to-serve

3Jj(·) can each be different functions but should be similarly scaled so
that comparisons among different cost functions are meaningful.
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principle introduced by Prorok [24], who showed that this
function is supermodular.

IV. APPROACH

The algorithm presented in this section provides an ap-
proximate solution, Af , to the Fair Supermodular Redundant
Assignment problem. The solution is approximate because we
relax the cardinality constraint for tractability purposes: the
solution Af can be α times larger than the size of the optimal
assignment (this section elaborates on the bound on α). By
relaxing the size of the solution, this assignment is guaranteed
to have a maximum cost that is at most equal to the maximum
cost of the optimal solution A∗. That is, the approximate
solution Af has a cost that is less than that of A∗ but a
size that is larger. This section outlines the algorithm, a bound
on the cardinality relaxation α, the limits on the deployment
size Nd, and the computational complexity of this approach.

A. The Relaxed Fair Supermodular Redundant Assignment
Problem

The basic premise of our approach to solving Problem 1 is
to conduct half-interval search on possible values of ξ and to
solve a sub-problem to determine which half-interval cannot
contain the target solution. Suppose there exists an algorithm
that finds the smallest assignment that yields a maximum task
cost of at most ξ, which is given as an input:

argmin
A⊆FO

|A|

s.t. Jj(A) ≤ ξ, ∀j
∀ i, |{j | (i, j) ∈ A ∪O}| ≤ 1

(3)

This sub-problem returns a candidate solution As. If As has
a cardinality that is at most Nd −M , then As and the given
value of ξ are feasible for Problem 1. If |As| > Nd − M ,
then As and the ξ value are not feasible. Solving this sub-
problem determines whether a given value of ξ is feasible.
Therefore, half-interval search can find the optimal (minimum
feasible) value of ξ. Given a starting range of possible ξ values,
the midpoint is tested for feasibility. If feasible, the half-
interval below the midpoint contains the optimal value and
thus becomes the new range of possible ξ values. Otherwise,
the higher half-interval becomes the new range. This procedure
repeats until convergence, at which point the returned As and
ξ are guaranteed to be optimal.

However, Krause proves with Theorem 3 [15] that unless
P = NP , there cannot exist any polynomial time approx-
imation algorithm for Problem 1. In other words, unless
P = NP , the sub-problem in equation (3) cannot be solved in
polynomial time. To enable a polynomial time approximation
algorithm for Problem 1, the cardinality constraint is relaxed
by α. This results in the relaxed Fair Supermodular Redundant
Assignment problem, with α > 1:

min
ξ,A⊆FO

ξ

s.t. Jj(A) ≤ ξ, ∀j
|A| ≤ α(Nd −M)

∀ i, |{j | (i, j) ∈ A ∪O}| ≤ 1

(4)

This relaxed problem can now be solved with the afore-
mentioned half-interval procedure. Given a value ξ, the sub-
problem of the relaxed Fair Supermodular Redundant Assign-
ment problem is still equation (3). However, the relaxation on
the cardinality constraint changes the update step of the half-
interval search. We begin with a range of values [ξmin, ξmax],
where ξmin = 0 because costs are strictly positive and ξmax is
the worst waiting time after the initial assignment, maxj Jj(∅).
Given the mid-point of this range, the sub-problem returns a
candidate solution As. Previously, the cardinality of As was
compared to Nd −M to determine its feasibility. Because of
the cardinality relaxation, the cardinality of As now informs
either the infeasibility of the original problem or the feasibility
of the relaxed problem, adjusting the respective bounds:
• If |As| > α(Nd −M), then ξ is not a feasible solution

to the original problem.4 Set ξmin = ξ.
• If |As| ≤ α(Nd−M), then ξ is a feasible solution to the

relaxed problem. Set ξmax = ξ.
To guarantee a solution, the number of agents used after the

relaxation, α(Nd−M), must not exceed the number of agents
available, N −M . Thus, set Nd ≤ N−M

α +M .
Through this point, we have assumed that there exists

an approach to solving the sub-problem defined in equation
(3) above. We have also assumed that this solution satisfies
the relaxed cardinality constraint α. The rest of this section
describes both an algorithm that solves this sub-problem and
the bound on the cardinality relaxation α.

B. Algorithm Details

We seek an algorithm to sub-problem (3) that finds the
smallest set A such that all cost functions Jj(A) are below a
given cost budget ξ. We build on the prior work of Prorok on
optimal matching of redundant agents under a cost budget
[24]. Leveraging this work requires two challenges to be
addressed. First, Prorok uses a single supermodular function
constraint while we constrain a set of M supermodular func-
tions. Second, the relaxation of this sub-problem must hold
for all iterations of the half-interval search.

We transform equation 3 to have a single supermodu-
lar cost constraint. Let Ĵj(A) be the truncated function
max{Jj(A), ξ} and form a single constraint of the average of
the set of Ĵj(A). This constraint is equivalent to the original
set of cost constraints. The average of truncated cost functions
less than ξ implies that all cost functions are less than ξ.
Additionally, truncation and the average function preserves
supermodularity. Because the average of the truncated cost
functions has a minimal value of ξ, the inequality constraint
becomes an equality constraint.

argmin
A⊆FO

|A|

s.t.
1

M

∑
j

Ĵj(A) = ξ

∀ i, |{j | (i, j) ∈ A ∪O}| ≤ 1

(5)

Prorok’s greedy algorithm [24] is shown to solve this
problem in polynomial time with a bound (which we call α)

4Or if there does not exist a feasible As.
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on the ratio of the solution set size to the optimal solution
set size. However, to use this approximation algorithm in the
half-interval search, the bound on α must be independent of
ξ. Theorem 1 below details a ξ-independent bound on α.

We solve Problem 1 with Algorithm 1, Fair Supermodu-
lar Redundant Assignment. After initialization, Algorithm 1
conducts a half-interval search over ξ. For each value of ξ,
Prorok’s Greedy Redundant Assignment (GRA) with dynamic
programming [24] greedily assigns agent-task pairs until either
all costs are below ξ or all agents are assigned. The output
of GRA is then used to update the range of ξ to continue the
half-interval search until convergence.

Algorithm description. The inputs required are M cost
functions Jj that are all supermodular, a deployment size
Nd ≥ M , a relaxation constant α ≥ 1, and an initial non-
redundant assignment O that can be found using traditional
methods such as the thresholding algorithm for the linear
bottleneck assignment problem. Lines 1-3 initialize the range
of ξ and the output solution Af . The while loop beginning
at line 5 is the half-interval search, whose interval bounds are
updated in lines 8-13. Given a value ξ (line 6) and the average
truncated cost function defined in line 1, the sub-problem in
equation 5 is solved (line 7). The solution of this sub-problem,
As, is then used to update the half-interval search range. If
|As| ≤ α(Nd − M), ξ is a feasible approximate solution
to Problem 1. ξmax is updated and As is kept as the best
candidate solution, Af . If |As| > α(Nd − M), there is no
feasible solution to Problem 1 for the given value of ξ, and
ξmin is updated. For every iteration of the half-interval search,
ξmin is guaranteed to be infeasible, i.e., lower than minimum
ξ in Problem 1. Therefore, the half-interval search converges
to ξ ≤ ξ∗ and the returned solution Af is guaranteed to satisfy
|Af | ≤ α(Nd −M).

Theorem 1 states that the Fair Supermodular Redundant
Assignment algorithm returns a solution Af with a cost that is
at worst equivalent to the cost achieved by A∗ but a solution
size that is up to α time larger, as defined in equation (6). The
algorithm works for any value of α ≥ 1, but values differing
from that defined in equation (6) will not have the guarantees
stated in Theorem 1.

Theorem 1. The Fair Supermodular Redundant Assignment
algorithm guarantees that

max
j
Jj(Af ) ≤ min

|A|≤Nd

max
j
Jj(A) and |Af | ≤ αNd

for a given Nd and α = 1+log(maxj Jj(∅)−1). The number
of function evaluations is

O
(

(1 + log2(M max
j
Jj(∅)) (Nd −M)NMS

)
where S is the number of samples taken from the cost
distributions.

Proof. Let J̄(A) = 1
M

∑
j Ĵj(A). Prorok’s Proposition 3 [24]

shows that for our sub-problem, α = 1 + log J̄(∅)−ξ
J̄(Ak−1)−ξ ,

where Ak−1 is the set chosen by the greedy algorithm in
its penultimate step (i.e., the next assignment by the greedy
algorithm achieves ξ). Because J̄ (Ak−1) can be arbitrarily
close to ξ, the bound can tend towards infinity, preventing a
ξ-independent bound on α. Assuming Jj(A) only takes integer

values, though, limits J̄ (Ak−1)−ξ to minimum value of one,
and ensures ξ ≥ 1 because costs are strictly positive, thus
yielding a ξ-independent bound of

α = 1 + log(max
j
Jj(∅)− 1) ≥ 1 + log(J̄(∅)− ξ) (6)

This result is similar to that derived by Wolsey [34].
Additionally, Krause builds on Wolsey’s result to show in
Section 7.1 [15] that integer objective functions can be easily
extended to take rational values by rounding by their highest
order bits, allowing a small additive approximation error.
Simulations in Section V show near-optimal performance
without the need for this rounding.

The computational complexity comes from the number of
times the half-interval search runs (1 + log2(M maxj Jj(∅))
[15] and the (Nd −M)NMS evaluations in the inner loop
sub-problem [24].

Algorithm 1 Fair Supermodular Redundant Assignment
Input: J1, ..., JM , Nd, α,O
Output: Set of fair redundant assignments, Af

1: Define J̄(A, ξ) = 1
M

∑
j max{Jj(A), ξ}

2: ξmin ←− 0
3: ξmax ←− maxj Jj(∅)
4: Af ←− ∅
5: while ξmax − ξmin ≥ 1

M do
6: ξ ←− ξmin+ξmax

2
7: As ←− GRA(J̄ , ξ,O)
8: if |As| ≤ α(Nd −M) then
9: ξmax ←− ξ

10: Af ←− As
11: else
12: ξmin ←− ξ
13: end if
14: end while
15: return Af

V. EVALUATION

We present Algorithm 1 as it applies the case study of
robots with uncertain travel times assigned to spatially located
tasks, such as in emergency supply delivery. The cost at
each node is defined as the expected waiting time, Jj(A) =
E
c

[mini {Cij |(i, j) ∈ A ∪O}]. The minimum operator here
represents the first-come first-to-serve principle [24]. In other
words, all robots have the emergency supplies (e.g., water or
medicine) to delivery to any task, and whichever robot arrives
to a task location first provides the supply thus accomplishing
the task. This case study seeks to minimize expected waiting
time of the worst task while ensuring the total deployment size
(initial plus redundant assignment) is less than Nd. Our case
study includes three sets of simulations.

The first two sets of simulations use random bipartite graphs
to empirically showcase Theorem 1 and to demonstrate that
Algorithm 1 outperforms benchmark algorithms. The bipartite
graphs in these simulations are abstract representations of any
problem that uses the first-come first-to-serve principle. The
last set of simulations uses a random transport network to
analyze a use case of Algorithm 1 and highlight the unfairness
that can arise from utilitarian assignment.
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Cost of Algorithm 1 Compared to Optimal

Fig. 2. Top. The percent difference in cost between the optimal assignment
and the assignments produced by Algorithm 1 displays our above proof that
the α value proven in Theorem 1 (left) yields super-optimal cost by using
larger than optimal assignments,and shows that α = 1 (right) yields near
optimal results. Note that positive values are sub-optimal (top) because the
problem is a minimization. Outliers are omitted. Bottom. The comparison of
the actual deployment size to the deployment size constraint shows that super-
optimality is achieved by relaxing the constraint, yielding larger assignments
and that α = 1 respects the deployment size constraint.

A. Empirical Display of Theorem 1

In this section, we display and visualize Theorem 1 empiri-
cally by showcasing that Algorithm 1 yields assignments with
more-than-optimal cost when using the cardinality relaxation
of α = 1 + log(maxj Jj(∅)− 1) and near optimal cost when
α = 1. The former achieves super-optimality by using a
deployment size that is larger than the desired deployment size,
while the latter respects the desired deployment size but has
no theoretical guarantees on performance (though empirically
near-optimal in most cases).

To show these results, Algorithm 1 must be compared to
the optimal assignment. Finding the optimal is extremely
computationally expensive because it requires brute force
search over the power set. Therefore, this simulation set is
constrained to small examples. We represent a problem with
18 agents, 2 tasks, and deployment sizes [3, 4, 5, 6, 7] as a
random bipartite graph, B = (U ,F , C). The small number
of tasks and deployment sizes are chosen for computational
tractability of the optimal solution, and the number of agents
is chosen to allow for the cardinality relaxation.

The set of vertices U is partitioned into two disjoint sets
Ua and Ut, the set of agent nodes (size 18) and task nodes
(size 2), respectively. The graph is fully connected, i.e., every
node in Ua is connected to all nodes in Ut. Each edge has
a corresponding cost random variable: a truncated Gaussian
distribution.5 These edges represent the distribution of travel
times from the agent location to the task location (e.g., in min-
utes). Means are uniformly sampled from the range [15, 20],

5Algorithm 1 does not rely on any Gaussian assumption. Any arbitrary
distribution, discrete or continuous, can be used.

Benchmark Comparisons of Algorithm 1

Fig. 3. Fair redundant assignment yields the largest improvement in maximum
task cost compared to benchmarks. The plots above shows the improvement
in cost for random redundant assignment, repeated threshold assignment, and
fair redundant assignment. The data show the percent difference between the
respective assignment and the initial non-redundant assignment. Left. M = 10
tasks, N = 40 agents, and varying Nd deployment sizes (x-axis). Right.
M = 10 tasks with varying number of agents, where the deployment size
equals the number of agents, N = Nd.

standard deviations uniformly sampled from the range [5, 10],
and all distributions are truncated at 5 (restricting the minimum
travel time between any agent and task to 5).

Using these parameters, we create 1000 random bipar-
tite graphs and implement Algorithm 1 using α = 1 +
log(maxj Jj(∅)−1) and α = 1, then calculate the brute force
optimal solution. Figure 2 shows the aggregate results over the
1000 trials. Because α = 1 + log(maxj Jj(∅) − 1) depends
on the problem instance, the value of α is not constant among
trials and ranges from [3.8, 4.2]. The left plots show that the
cardinality relaxation yields assignment sizes that are larger
than the desired size but costs that are better than optimal. On
the right, using α = 1 respects the desired deployment size
while achieving near-optimal performance empirically. 6

B. Comparing Algorithm 1 to Benchmarks

In the following, we show that Algorithm 1 with α = 1
outperforms three benchmarks: (1) non-redundant assignment
using the thresholding algorithm, (2) random assignment of
redundant agents, (3) repeated iterations of the thresholding
algorithm for redundant assignment. We use α = 1 since it is
shown above to be near optimal without the need for cardi-
nality relaxations. The results in Figure 3 show that redundant
agents improve the performance of non-redundant assignments
and that Algorithm 1 outperforms all three benchmarks.

We create 1000 random bipartite graphs with the cost
random variable parameters listed above. Because calculating
the optimal is not needed in these simulations, larger graphs
are studied.7 We first consider 40 agents and 10 tasks, with in-
creasing deployment sizes. These trials restrict the deployment
size such that some agents are unused. Next, we consider 10
tasks with varying number of agents where all available agents
are deployed, i.e., N = Nd. These two different problem

6The majority of trials using α = 1 are optimal; only the unshown outliers
are sub-optimal, which lie within 10% of optimal in these simulations.

7Graphs with tens of agents and tasks are shown in this paper, but the
algorithm has been run on examples with hundreds of agents and tasks.
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Improvements of Tasks Due to Redundancy

Fig. 4. Left. The frequency at which different tasks are improved by redundant
assignment under the utilitarian and fair algorithms across 500 examples. The
tasks are ordered by increasing expected cost after the initial assignment,
showing that the fair approach always helps the tasks that are worse off
while the greedy approach more uniformly helps tasks. Right. The percent
improvement in the average and maximum task cost compared to those of
the initial assignment shows that the fair assignment does not improve the
average as much as does the utilitarian assignment but strongly outperforms
in improvement of the maximum cost.

setups are chosen to show that Algorithm 1 performs well
in scenarios when partial and full deployment is desired. In
both cases, Algorithm 1 outperforms the benchmarks. 8

C. Random Transport Network Case Study
We instantiate 500 random transport networks with 32

agents and 16 tasks randomly located at different nodes where
the travel time along each edge is represented by a Gaussian
random variable truncated at zero with mean uniformly sam-
pled from the range [10, 20] and standard deviation uniformly
sampled from the range [5, 10]. Assignments of size 20 are
found using Algorithm 1 and the utilitarian approach.9

Figure 4 shows that the utilitarian approach nearly uni-
formly helps tasks, while Algorithm 1 focuses the redundant
agents on helping tasks most in need (those with the highest
task cost). Additionally, for more than half the trials, the utili-
tarian approach does not help the worst-off task. All redundant
assignment is guaranteed to improve the average task cost
because the redundant agents improve the performance of their
assigned tasks. While utilitarian redundant assignment better
improves the average task cost, it does not necessarily improve
the maximum cost. Fair redundant assignment is guaranteed
to improve both the maximum and the average task cost.

VI. DISCUSSION

This work is inspired by robotic applications such as rescue
and medical or emergency supplies delivery. The objectives of
such applications focus on task completion time and omit other
costs (e.g., energy used). While previous work focuses on av-
erage performance, we observe that the human-centric nature

8Not shown here is Algorithm 1 with the α from equation (6), which is
guaranteed perform at least as good as α = 1, but comes at the cost of larger
assignments. In the right of Figure 3, both α values perform equally because
there are no available agents to be used by the cardinality relaxation.

9Both algorithms require an initial non-redundant assignment. To compare
the results on the same footing, both algorithms are given the same initial
assignment: Hungarian assignment on mean travel times.

of these applications requires considerations of fairness. While
our work contributes to fairness in redundant assignment by
improving the objective function, we acknowledge that fair-
ness is more than a mathematical formulation and we welcome
discussions of the broader impact of these algorithms.

For practitioners, note the similarity of our problem for-
mulation and approach to works on providing robustness to
a worst-case objective. This formulation is flexible in that
it has few assumptions, such as the supermodularity of the
cost functions. Thus far, work in redundant assignment has
focused on the first-come first-to-serve principle. However,
Algorithm 1 can be applied to many multi-agent problems
where uncertainty impacts task performance, requiring new
collaboration functions, Jj(A).

When studying other applications, scalability must be con-
sidered. Theorem 1 shows that the complexity of Algorithm 1
is dominated by the greedy term, which scales linearly with
the dominant term, N , because the number of tasks, M , and
degree of redundancy, Nd are small. In instances where both
Nd and N are large, the scaling is approximately quadratic.
In such cases, our centralized approach is less tractable, and
therefore could be adapted via hierarchical approaches or by
developing new decentralized algorithms.

Last, we note that existing approaches in redundant assign-
ment, including this work, assume an initial non-redundant
assignment. Therefore, no theoretical guarantees have been
proven for the full assignment of initial and redundant agents
thus far. Doing so will require new algorithms that do not rely
on the initial assignment to maintain supermodularity and that
ensure that all tasks are assigned at least one agent.

VII. CONCLUSIONS

Redundant assignment provides robustness against uncer-
tainty and improves task performance. While redundancy
comes at the cost of using more robots, it is beneficial in
time sensitive scenarios such as rescue or emergency delivery.

Inspired by the human-centric nature of these application
spaces (e.g., rescue), we build on previous work in redun-
dant assignment to consider fairness; notably, we are first to
formalize fairness in this space. Using a Rawlsian approach
to fairness, we formulate fair redundant task allocation as
the optimization of worst-case task cost with a cardinality
constraint, a problem that is NP-Hard. We exploit the natural
supermodularity of the problem to propose a tractable solution.

Algorithm 1 is a binary search where the target value is
determined by greedily solving the relaxed sub-problem shown
in equation 5. This algorithm converges to an approximate so-
lution: an assignment that is α times larger than the cardinality
constraint. We prove performance guarantees of this algorithm,
showing that the returned approximate solution has a cost that
is less than that of the optimal solution but a solution size that
is α times larger. Theorem 1 proves bounds on this α value.

Additionally, we show empirically that Algorithm 1 with
α = 1 (meaning the cardinality constraint remains satisfied)
provides near optimal results, despite having no theoretical
guarantees. Simulated experiments show that this approach
outperforms benchmarks, scales to large problem instances,
and provides both increased fairness and increased utilitarian
social welfare over non-redundant assignments.
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APPENDIX

A. Supermodularity
Supermodularity implies that adding an element x to a set

A results in a larger or equal marginal decrease than when x
is added to a superset of A. This is known as the property
of diminishing returns; there are diminishing returns from an
added element x as the set it is added to grows larger. Below
are the formal definitions of supermodularity [24].

Definition 2. Marginal Decrease. For a finite set F and a
given set function J : 2F 7→ R, the marginal decrease of J at
a subset A ⊆ F with respect to an element x ∈ F\A is:

∆J(x|A) , J(A)− J(A ∪ {x}) (7)

Definition 3. Supermodularity. Let J : 2F 7→ R and A ⊆ B ⊆
F . The set function J is supermodular10 if and only if for any
x ∈ F\B

∆J(x|A) ≥ ∆J(x|B) (8)

Lemma 1. The maximum of a set of supermodular functions
is not supermodular.

Proof. Consider an assignment set A and an element x to
be added. Let x decrease the value of J1(A). Here, x is
an assignment of a new agent to task 1, thus decreasing the
expected cost of task 1. If J1 is not the maximum of the all Jj ,
the addition of x to A has no effect on maxj(Jj(A)). In other
words, its marginal decrease of maxj(Jj(A)) with respect to
x is zero. By Definition 3, maxj(Jj) is only supermodular if
the marginal decrease of maxj(Jj) with respect to x is also
zero for all supersets of A.

Let B be a superset of A that improves upon all task
costs except task 1, such that the maximum cost of B is J1.
Here B ⊇ A such that maxj(Jj(B)) = J1(B) = J1(A).11

Since the assignment x decreases the value of J1(A), it
decreases the value of maxj(Jj(B)). Therefore, the marginal
decrease of adding x to B is nonzero, meaning maxj(Jj) is
not supermodular.
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