210 research outputs found
Investigation of MLH1, MGMT, CDKN2A, and RASSF1A Gene Methylation in Thymomas From Patients With Myasthenia Gravis
A feature of thymomas is their frequent association with myasthenia gravis (MG), an autoimmune disease characterized by the production of autoantibodies directed to different targets at the neuromuscular junction. Indeed, almost 30–40% of thymomas are found in patients with a type of MG termed thymoma-associated MG (TAMG). Recent studies suggest that TAMG-associated thymomas could represent a molecularly distinct subtype of thymic epithelial tumors (TETs), but few data are still available concerning the epigenetic modifications occurring in TAMG tissues. The promoter methylation levels of DNA repair (MLH1 and MGMT) and tumor suppressor genes (CDKN2A and RASSF1A) have been frequently investigated in TETs, but methylation data in TAMG tissues are scarce and controversial. To further address this issue, we investigated MLH1, MGMT, CDKN2A, and RASSF1A methylation levels in blood samples and surgically resected thymomas from 69 patients with TAMG and in the adjacent normal thymus available from 44 of them. Promoter methylation levels of MLH1, MGMT, CDKN2A, and RASSF1A genes were not increased in cancer with respect to healthy tissues and did not correlate with the histological or pathological features of the tumor or with the MG symptoms. The present study suggests that hypermethylation of these genes is not frequent in TAMG tissues
Advanced microscopy analysis of the micro-nanoscale architecture of human menisci
The complex inhomogeneous architecture of the human meniscal tissue at the micro and nano scale in the absence of artefacts introduced by sample treatments has not yet been fully revealed. The knowledge of the internal structure organization is essential to understand the mechanical functionality of the meniscus and its relationship with the tissue’s complex structure. In this work, we investigated human meniscal tissue structure using up-to-date non-invasive imaging techniques, based on multiphoton fluorescence and quantitative second harmonic generation microscopy complemented with Environmental Scanning Electron Microscopy measurements. Observations on 50 meniscal samples extracted from 6 human menisci (3 lateral and 3 medial) revealed fundamental features of structural morphology and allowed us to quantitatively describe the 3D organisation of elastin and collagen fibres bundles. 3D regular waves of collagen bundles are arranged in “honeycomb-like” cells that are comprised of pores surrounded by the collagen and elastin network at the micro-scale. This type of arrangement propagates from macro to the nanoscale
Comparison between clinical grading and navigation data of knee laxity in ACL-deficient knees
<p>Abstract</p> <p>Background</p> <p>The latest version of the navigation system for anterior cruciate ligament (ACL) reconstruction has the supplementary ability to assess knee stability before and after ACL reconstruction. In this study, we compared navigation data between clinical grades in ACL-deficient knees and also analyzed correlation between clinical grading and navigation data.</p> <p>Methods</p> <p>150 ACL deficient knees that received primary ACL reconstruction using an image-free navigation system were included. For clinical evaluation, the Lachman, anterior drawer, and pivot shift tests were performed under general anesthesia and were graded by an examiner. For the assessment of knee stability using the navigation system, manual tests were performed again before ACL reconstruction. Navigation data were recorded as anteroposterior (AP) displacement of the tibia for the Lachman and anterior drawer tests, and both AP displacement and tibial rotation for the pivot shift test.</p> <p>Results</p> <p>Navigation data of each clinical grade were as follows; Lachman test grade 1+: 10.0 mm, grade 2+: 13.2 ± 3.1 mm, grade 3+: 14.5 ± 3.3 mm, anterior drawer test grade 1+: 6.8 ± 1.4 mm, grade 2+: 7.4 ± 1.8 mm, grade 3+: 9.1 ± 2.3 mm, pivot shift test grade 1+: 3.9 ± 1.8 mm/21.5° ± 7.8°, grade 2+: 4.8 ± 2.1 mm/21.8° ± 7.1°, and grade 3+: 6.0 ± 3.2 mm/21.1° ± 7.1°. There were positive correlations between clinical grading and AP displacement in the Lachman, and anterior drawer tests. Although positive correlations between clinical grading and AP displacement in pivot shift test were found, there were no correlations between clinical grading and tibial rotation in pivot shift test.</p> <p>Conclusions</p> <p>In response to AP force, the navigation system can provide the surgeon with correct objective data for knee laxity in ACL deficient knees. During the pivot shift test, physicians may grade according to the displacement of the tibia, rather than rotation.</p
The human meniscus behaves as a functionally graded fractional porous medium under confined compression conditions
In this study, we observe that the poromechanical parameters in human meniscus vary spatially throughout the tissue. The response is anisotropic and the porosity is functionally graded. To draw these conclusions, we measured the anisotropic permeability and the “aggregate modulus” of the tissue, i.e., the stiffness of the material at equilibrium, after the interstitial fluid has ceased flowing. We estimated those parameters within the central portion of the meniscus in three directions (i.e., vertical, radial and circumferential) by fitting an enhanced model on stress relation confined compression tests. We noticed that a classical biphasic model was not sufficient to reproduce the observed experimental behaviour. We propose a poroelastic model based on the assumption that the fluid flow inside the human meniscus is described by a fractional porous medium equation analogous to Darcy’s law, which involves fractional operators. The fluid flux is then time-dependent for a constant applied pressure gradient (in contrast with the classical Darcy’s law, which describes a time independent fluid flux relation). We show that a fractional poroelastic model is well-suited to describe the flow within the meniscus and to identify the associated parameters (i.e., the order of the time derivative and the permeability). The results indicate that mean values of λβ,β in the central body are λβ=5.5443×10−10m4Ns1−β, β=0.0434, while, in the posterior and anterior regions, are λβ=2.851×10−10m4Ns1−β, β=0.0326 and λβ=1.2636×10−10m4Ns1−β, β=0.0232, respectively. Furthermore, numerical simulations show that the fluid flux diffusion is facilitated in the central part of the meniscus and hindered in the posterior and anterior regions
Multifunctional ceramic thin films for high-performance orthopaedic implants
Protective hard films on soft inorganic/organic substrates are appealing for several technological applications like solar cells, organic electronics, fuel cells, etc. The main concern is still related to the bad quality of the interface and to the weak mechanical properties of the film as a consequence of the low working temperatures mandatory to prevent substrate softening/melting. Our research activity at Rizzoli Orthopaedic Institute is mainly directed toward the deposition of functional ceramic thin films to improve the mechanical properties (and thus the clinical performances) of the load-bearing plastic component of the prosthetic implant. To this aim, we use a novel sputter-based electron deposition technique named Pulsed Plasma Deposition (PPD) able to provide nanostructured ceramic thin films highly adhered to the plastic substrate and with optimum mechanical performances even if working at room temperature and using very-soft substrates
- …