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Bargaining, interdependence, and the
rationality of fair division

Giuseppe Lopomo∗

and

Efe A. Ok∗∗

We consider two-person bargaining games with interdependent preferences and bilateral incom-
plete information. We show that in both the ultimatum game and the two-stage alternating-offers
game, our equilibrium predictions are consistent with a number of robust experimental regularities
that falsify the standard game-theoretic model: occurrence of disagreements, disadvantageous
counteroffers, and outcomes that come close to the equal split of the pie. In the context of infinite-
horizon bargaining, the implications of the model pertaining to fair outcomes are even stronger.
In particular, the Coase property in our case generates “almost” 50-50 splits of the pie, almost
immediately. The present approach thus provides a positive theory for the frequently encountered
phenomenon of the 50-50 division of the gains from trade.

1. Introduction

� Fair divisions of gains from trade are commonly observed in daily life. They occur even
in the case of bargaining among two asymmetrically placed parties, one of whom holds a clear
strategic advantage over the other. In addition to the substantial anecdotal evidence to this effect,
the numerous experimental studies since the early 1980s have shown that fair outcomes play a truly
focal role in bargaining situations. Today most authors appear to agree on at least three major
robust, yet unexpected, empirical regularities that arise in bargaining games. First, proposed
divisions accumulate around the 50-50 division; the actual outcomes are “more fair” than the
usual prediction.1 Second, rejections, which should never be observed on the equilibrium path,
occur in significant numbers. Third, more often than not, subjects who reject an offer make
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1 Perhaps the most striking example of this phenomenon is provided by Güth, Schmittberger, and Schwarze
(1982), who studied experimentally the two-player ultimatum game and found that the average proposal by first-movers
was roughly in the neighborhood of (60%, 40%), with about 20% of the proposals being rejected.
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a disadvantageous counteroffer, that is, after rejecting a proposal that would leave them with
x dollars, they propose a new division that spares them less than x dollars.2 Clearly, all of
these observations are in contrast with the standard game-theoretic predictions, thereby putting
bargaining theory, which has significant applications in the fields of industrial organization and
international trade, on a hot seat.

One way of interpreting these findings is to argue that pure expected profit maximization
cannot be the only criterion guiding the choices of the players in bargaining games. For instance,
among others, Ochs and Roth (1989) have suggested that a notion of “fairness” may be influencing
the subjects’ behavior. In a complementary study, Bolton (1991) has proposed the idea that
“fairness” may guide a subject’s behavior only when he is getting less surplus than his opponent.
To account for rejections and disadvantageous counteroffers, Bolton also considered informally a
simple model in which players have incomplete information about their opponents’ preferences.3

In the present article, we advance that the said experimental regularities can be explained
by modelling suitably the “fear of rejection” that a bargainer may feel throughout the negotiation
process. While this idea is not new (e.g., it is implicit in Bolton (1991)), it has received little
attention from the bargaining theorists, probably because the notion of “fear of rejection” is not a
primitive of the game but rather implicit in the preferences and beliefs of the players. To bring out
reasonable predictions from this notion, then, one needs to alter the bargaining models through
the utility functions and/or beliefs of the players. To this end, we investigate here the implications
of the possibility that each player’s utility depends not only on her absolute level of earnings, but
also on her relative share of the total surplus.4 In the resulting bargaining model, each player’s
type is referred to as “independent” if her utility depends exclusively on her absolute earnings, and
“(negatively) interdependent” otherwise. The latter kind of preferences relate to the time-honored
relative income hypothesis and are thus much studied in various branches of economic literature.
In the context of bargaining, on the other hand, a negatively interdependent individual may be
thought of as a competitive player who does not wish to “lose the game” unless he is sufficiently
compensated for it. We shall show that this induces the proposing players to possess possibly
significant levels of “fear of rejection,” and when it is combined with the realistic hypothesis
that one’s true degree of competitiveness (interdependence) is private information, it leads to
predictions that are consistent with experimental findings on bargaining games. Notably, this is
not so simply because “players are spiteful,” but because of the much more reasonable hypothesis
that “a player might think (i.e., assign positive probability to the event) that his opponent may
care about her own relative share.”5

The objective of the present article is, then, twofold. We shall first show that extending the
Stahl-type bargaining models by incorporating the notion of “fear of rejection” through the pos-
sible negative interdependence of individuals leads to equilibrium predictions that accord well
with the qualitative regularities obtained in experiments, especially with those that relate to fair
divisions of gains from trade.6 In turn, this observation encourages one to investigate the impli-

2 See, in particular, Ochs and Roth (1989) and Bolton (1991). Camerer and Thaler (1995) and Roth (1995) provide
excellent surveys of the related experimental literature.

3 Bolton’s incomplete-information model is, however, built on restrictive assumptions. For instance, it is assumed
a priori in this model that the true distribution of players’ types is such that the game has a unique equilibrium, in which
the initial offer is always accepted. Moreover, the formal examination of the properties of the sequential equilibria of this
model is absent in Bolton’s otherwise penetrating analysis.

4 Alternative models that perturb the individual utility functions are considered by Rabin (1993), Daughety (1994),
Kirchsteiger (1994), Andreoni and Miller (1996), Levine (1998), Fehr and Schmidt (1999), and Bolton and Ockenfels
(2000).

5 We stress that the notion of “fear of rejection” is not modelled here in an ad hoc fashion, but is rather introduced
through individual preferences (which are primitives of a game-theoretical model). Put differently, our model does not
assume but predicts behavior that exhibits a fear of rejection.

6 The work of Daughety (1994), who considers an incomplete-information setup with positive and negative
interdependence, is particularly related to this part of our work. In particular, that article also explains increased sharing in
the ultimatum game and provides an example in which disadvantageous counteroffers occur in equilibrium. By contrast,
we work here with a more general utility specification (only with negative interdependence) and provide a relatively
general analysis of finite- and infinite-horizon bargaining models.
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cations of the potential negative interdependence of players in infinite-horizon bargaining games.
Our second objective is to carry out this task, and we argue formally that such an extension allows
one to draw striking conclusions in such models with regard to egalitarian outcomes. There is, of
course, a literature that studies the emergence of the equal division as a focal point, but few studies
have examined the conditions under which the 50-50 split is actually an equilibrium outcome of
a bargaining game played among rational individuals.7 We aim to show that very egalitarian out-
comes can indeed be sustained in equilibrium, provided that bargainers have possibly negatively
interdependent preferences. In fact, it turns out that in a variety of bargaining contexts, the slight-
est doubt that players may have about their opponents being excessively competitive leads to a
very forceful “fear of rejection” and hence induces very fair outcomes. Furthermore, as we shall
demonstrate by using a mechanism design approach, the possibility of interdependence leads to
such outcomes also in bargaining scenarios that are resolved by an arbitrator.

It is worth noting at the outset that we do not suggest that negatively interdependent pref-
erences could be used to explain the data from a large variety of experiments. Here we wish
to model rigorously (and endogenously) the notion of “fear of rejection,” and hence, in con-
trast to Andreoni and Miller (1996), Levine (1998), Fehr and Schmidt (1999), and Bolton and
Ockenfels (2000), we focus exclusively on bargaining experiments.8 Moreover, by no means do
we regard the present article as providing evidence for the simplistic statement that “people are
spiteful.”9 Instead, we argue that negatively interdependent preferences allow one to extend the
usual bargaining model in a way to incorporate the potential competitiveness/aggressiveness of
the bargainers and, hence, to bring to the fore the notion of “fear of rejection.” In the context of
bargaining, such preferences make good intuitive sense, and they produce qualitative predictions
that match the data well. What is more, they lead to interesting theoretical results in the context
of the usual infinite-horizon bargaining models. Our main message is simply that it is possible
to substantiate the theory of bargaining by modelling the bargainers as possibly negatively inter-
dependent agents, at least insofar as the predictions about the egalitarian divisions of gains from
trade are concerned.

The rest of the article is organized as follows. In Section 2 we introduce the general formu-
lation of beliefs and preferences of individuals that we shall adhere to throughout. Each of the
subsequent four sections will adopt these primitives (with minor technical alterations) but change
the rules of bargaining. In particular, in Sections 3 and 4 we examine the standard one- and two-
period models, respectively, and prove the existence of perfect Bayesian equilibria that envisage
fair outcomes along with rejections and disadvantageous counteroffers. An important finding of
Section 4 is that disadvantageous counteroffers cannot occur in a model in which players’ utilities
are discounted, while the monetary surplus remains constant, through time. We therefore claim
that disadvantageous counteroffers can only be observed in the experiments in which, for prac-
tical reasons, one discounts the size of the pie (or the value of the shares of the players). This is
a concrete prediction of the present model: disadvantageous counteroffers cannot take place in
finite-horizon bargaining in which discounting is induced by the passage of real time that leaves
the physical size of the gains from trade intact. It would be interesting to test experimentally the
validity of this claim.

In Section 5 we focus on the implications of possibly negatively interdependent preferences

7 Most articles that examine the origin of fair outcomes in bargaining games are evolutionary in nature. Young
(1993), for instance, studies an evolutionary model of the Nash demand game played between two populations who learn
adaptively. He shows that the equal split can be the unique stable division depending on the nature of the expected utility
function. (See Ellingsen, 1997, for a similar analysis.) Bolton (1997), on the other hand, provides an alternative bargaining
game, of which at least one (limit) evolutionarily stable equilibrium results in the equal split.

8 For example, in the standard “dictator game,” where one subject single-handedly decides how to divide a given
surplus between himself and another subject, the predictions of our model (like those of the “pure fairness” models) are
not really in concert with the experimental findings. (See Forsythe et al., 1994.) We shall elaborate on this issue further
in Section 7.

9 After all, it is not clear why an individual cannot act altruistically in, say, a public-good problem that involves many
potential contributors and behave aggressively in a two-person face-to-face bargaining situation. Admittedly, however,
endogeneity of preferences is a complicated (but very interesting) issue about which we have little to say at present.

© RAND 2001.



266 / THE RAND JOURNAL OF ECONOMICS

in infinite-horizon bargaining. It turns out that an interesting case in which players have nega-
tively interdependent preferences is essentially identical to the “gap case” of the much-studied
buyer-seller bargaining model with risk-neutral players. Therefore, all the results known in that
context can be shown to apply to the present setup. In particular, the famous “Coase conjecture,”
established by Gul, Sonnenschein, and Wilson (1986), implies the following result in the present
setting: as the frequency of offers increases arbitrarily, even the smallest doubt in the mind of
the player who makes all the offers about his opponent’s degree of (negative) interdependence
being relatively high, induces him to propose a division relatively close to the 50-50 split, almost
immediately. We believe that this result is but an important step toward providing a rational theory
of equal division.

Many bargaining situations in the real world do not fit perfectly with the theoretical bargaining
models, for they are settled by arbitration. A natural question, then, is whether the potential negative
interdependence of preferences would enforce the emergence of fair outcomes in bargaining
settlements as well. By adopting a mechanism-design approach and exploiting the intuition that
negative interdependence forces fear of rejection in such a context through individual-rationality
constraints, we show in Section 6 that this is indeed the case. Section 7 concludes.

2. The bargaining environment and interdependent preferences

� The environment. We consider a bargaining environment in which two players try to agree
on how to divide a pie of size 2m, where m > 1. In case of disagreement, each player receives
ε ∈ (0, m).10 Thus, the size of the pie, net of the bargainers’ holdings, is 2m − 2ε. Equivalently,
we can assume that the players have an initial level of wealth ε and are bargaining over a pie of
size 2m − 2ε, which is wasted if disagreement occurs. Without loss of generality, we let ε = 1 so
that the set of all feasible divisions of the pie is X ≡ {(xA, xB) ≥ (1, 1) : xA + xB ≤ 2m}, while
the set of all efficient divisions is given by

Y ≡ {(xA, xB) ∈ X : xA + xB = 2m}.

In this article, we examine the consequences of the possibility that the bargainers’ welfare
depend not only on the absolute gains that they may achieve through bargaining, but also on the
relative sizes of the slices of the pie that they get. Thus, given an allocation (xA, xB) ∈ X , we
assume that the utility of player i depends not only on xi , but also on xi/x̄ , where x̄ denotes the
average payoff in the allocation, i.e., x̄ ≡ (xA + xB)/2. Of course, it is realistic to posit that the
players are unsure about their opponents’ degree of interdependence, and hence the presence of
interdependence forces us to consider an incomplete-information model.11 To this end, we take an
arbitrary �i > 0 and designate a subset Ti of the interval [0, �i ], with 0 ∈ Ti , as the type space of
player i = A, B. The beliefs of j �= i will thus be modelled through a distribution function whose
support is contained in Ti . In turn, the utility function ui : X ×Ti → R of player i is expressed as

ui
(
xA, xB | θi

)
≡ Vi

(
xi ,

xi

x̄
| θi

)
, i = A, B, (1)

where all functions Vi (·, · | θi ) for θi ∈ Ti\{0} are continuous and strictly increasing in both
arguments, while Vi (·, · | 0) is strictly increasing in its first argument and independent of the
second argument. Moreover, in what follows, we impose the following normalization condition:

Vi (1, 1 | θi ) = 0 for all θi ∈ Ti\{0}, i = A, B. (2)

10 We require ε > 0 in order to avoid the indeterminate form 0/0.
11 Bolton (1991, p. 1112), says that “the marginal rate of substitution between absolute and relative money most

likely varies by individual, making utility functions private information.” A similar point was made also by Kennan and
Wilson (1993, p. 93), who argue that the most bargaining experiments in the literature “can be interpreted, in effect, as
involving bargaining with private information, as evidently most players did not know the preferences of the opposing
bargainer.”
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FIGURE 1

In words, we model the preferences as (possibly) being negatively interdependent: player i
of type θi ∈ Ti\{0} cares not only about her share of the pie xi , but also about how xi compares
with the average level of earnings x̄ .12 By contrast, the present formulation maintains that θi = 0
corresponds to the type with (standard) independent preferences.

Given a type profile (θA, θB), the bargaining problem (in the sense of Nash) associated
with the present setting is (U, (0, 0)), where (0, 0) is the disagreement point and U is the utility
possibility set {(VA(xA, xA/x̄ | θA), VB(xB, xB/x̄ | θB)) : x ∈ X}. The bargaining set B(U) of
this problem is, in turn, defined as the set of all Pareto optimal and individually rational utility
allocations in U , that is,

B(U) ≡
{(

VA

(
xA,

xA

x̄
| θA

)
, VB

(
xB,

xB

x̄
| θB

))
≥ (0, 0) : x ∈ Y

}
.

As Figure 1 illustrates, due to the individual-rationality constraints, this set is typically smaller
than the bargaining set of the usual setup (with independent preferences).

� Fear of rejection. The presence of negative interdependence is the main feature that
distinguishes this article from the existing literature on bargaining theory. While we do subscribe
to the oft-quoted psychological considerations that motivate taking such preferences seriously, we
also propose the present model as a particularly suitable one to explicitly account for the fear of
rejection that a bargainer may have in case she makes an offer that favors herself disproportionately.
It is not unreasonable to think of a bargainer A who does not propose an allocation that keeps the
entire pie to herself as reasoning along the following lines: “If I offer an allocation that would

12 There is abundant empirical evidence in support of this hypothesis. (See, for instance, Frank (1987) and Clark
and Oswald (1996) and references cited therein.) The particular utility representation we use here is, in turn, axiomatically
characterized by Ok and Koçkesen (2000). While simpler, this representation is similar to those employed by Bolton
(1991) and Bolton and Ockenfels (2000).
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leave B with a very small share of the pie, she may get upset and reject my offer. My share of the
pie should then still be higher than hers, but not so large as to offend her.” If we assume that the
preferences of B are as in (1), it is easy to see that the gist of this reasoning will influence A’s
behavior when it is her turn to make a proposal. Introducing negatively interdependent preferences
into bargaining models may thus be thought of as a non–ad hoc way of modelling (in reduced
form) the notion of “fear of rejection,” which commands considerable experimental support (Weg
and Zwick, 1994; Bolton and Zwick, 1995). We stress that the fear of rejection is not introduced
here as a primitive aspect of the utility functions. Instead, as we shall demonstrate shortly, it shows
itself in the equilibrium behavior of the (possibly) negatively interdependent bargainers.

Surprisingly, there are only a few studies that investigate how the main insights of the
theory of bargaining would be affected by the presence of negatively interdependent preferences.
These studies, most notably Bolton (1991) and Kirchsteiger (1996), focus almost exclusively
on finite-horizon complete-information models. Therefore, while these authors show that the
idea of negatively interdependent preferences passes important preliminary tests in explaining
experimental evidence, it is still not clear at this point what general insight can be gained by
introducing such preferences into bargaining theory. As noted earlier, the aim of this article is to
make use of the general utility specification given in (1) and to argue that the possibility of negative
interdependence can explain the occurrence of disagreements, disadvantageous counteroffers, and
the outcomes that come very close to the equal split of the pie.

� Degree of interdependence. The connection between the notions of negative
interdependence and fear of rejection suggests a natural index for the degree to which a particular
type of player i is negatively interdependent: the minimum share of the pie that i (of type θi ) must
be given to be at least as well off as she would be at the disagreement outcome. This share, which
we shall call the reservation amount ri (θi ), is uniquely determined by the equation

Vi

(
ri (θi ),

ri (θi )
m

| θi

)
≡ 0.

Since Vi (1, 1/m | 0) = Vi (1, 1 | 0) = 0 by the normalization condition (2), the reservation of the
independent type is zero, that is, ri (0) = 1. Moreover, ri (θi ) ∈ (1, m) for any θi ∈ Ti\{0}, since

Vi

(
1,

1
m

| θi

)
< Vi

(
1, 1 | θi

)
= Vi

(
ri (θi ) ,

ri (θi )
m

| θi

)
< Vi

(
m, 1 | θi

)
.

In what follows we wish to think of higher types as more competitive (negatively
interdependent) players. Therefore, we invoke the following assumption that associates higher
types θi with higher levels of reservation amounts:

Assumption 1. ri : Ti → [1, m) is a strictly increasing function, i = A, B.

Clearly, Assumption 1 relates the magnitude of each player’s type to her level of interdependence
in a natural way: if type θi of player i prefers the disagreement outcome (1, 1) to an outcome
x = (xA, xB), then any type θ ′

i > θi strictly prefers (1, 1) to x . Therefore, this assumption
formalizes, in effect, the link between the preferences represented through (1) and the notion of
fear of rejection.

3. One-period bargaining

� In this section we examine briefly the classic ultimatum game with negatively interdependent
preferences. The rules of the game are simple: player A proposes an allocation x ∈ Y , and player
B either accepts or rejects A’s offer. If player B accepts, the proposed allocation is realized.
Otherwise, both players receive the disagreement outcome (1, 1).
© RAND 2001.
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We take here that Ti = [0, �i ] and assume that θB is privately known by player B. It is easy
to see that the equilibrium in the ultimatum game does not depend on whether player A’s type is
private information or not. In turn, player A’s beliefs about θB are represented by a continuous
cumulative distribution function F : Ti → [0, 1].13

To determine the subgame-perfect equilibria of the ultimatum game, we define the function
τB as τB(xB) ≡ r−1

B (xB) for all xB ∈ [1, rB(�B)]. This function specifies a critical level of
interdependence τB (xB) below which player B accepts and above which he rejects any given
offer (2m − xB, xB). Indeed, by Assumption 1, θB≶τB(xB) implies that rB(θB)≶xB , so that
0 = VB(rB(θB), rB(θB)/m | θB)≶VB(xB, xB/m | θB). Consequently, in any subgame-perfect
equilibrium, player A of type θA chooses xB ∈ [1, m) to maximize the following objective
function:

VA

(
2m − xB,

2m − xB

m
| θA

)
F (τB (xB)) . (3)

We thus obtain the following result.

Proposition 1. Under Assumption 1 any perfect Bayesian equilibrium outcome of the ultimatum-
bargaining game with negatively interdependent preferences has the following structure: Player
A proposes a division (2m − xB(θA), xB(θA)), where xB(θA) ∈ [1, m) maximizes the expression
in (3). Player B accepts if her true type θB is strictly lower than the critical threshold τB(xB(θA)),
and rejects if τB(xB(θA)) < θB .

Proposition 1 (the analogs of which are also obtained by Daughety (1994), Fehr and
Schmidt (1999), and Bolton and Ockenfels (2000)) establishes that the two major “puzzling”
regularities observed in ultimatum-bargaining experiments, namely interior offers and rejections,
are consistent with game-theoretic equilibrium behavior. Once one accepts the idea that the
competitive nature of bargainers plays a role in ultimatum experiments, it is realistic to assume
that the exact degree of a player’s interdependence is her private information. In this case,
Proposition 1 shows that for generic probability distributions representing player A’s beliefs about
his opponent’s preferences, all equilibrium offers must indeed be “more fair” than (2m −1, 1) but
less fair than (m, m), and rejections occur with positive probability. The intuition is simply that,
A knowing that B has possibly negatively interdependent preferences, fears rejection. Clearly,
Proposition 1 reinforces the argument that negatively interdependent preferences can be thought
of as an indirect way of modelling the presence of fear of rejection on the part of the first movers.

4. Two-period bargaining

� In this section we investigate the two-period alternating-offer bargaining game in which
players have negatively interdependent preferences. It may be argued that two-period bargaining
models are not appealing because they do not correspond to any bargaining scenario that is played
out in practice. However, such models are studied experimentally by several authors, and just as
in the ultimatum-bargaining experiments, a number of striking regularities are identified. Before
examining the implications of the interdependence hypothesis in the case of infinite-horizon
models, therefore, it is worthwhile to check whether this hypothesis is successful in “explaining”
these behavioral regularities. Our aim in this section is to carry out this task.

We focus on the standard Stahl bargaining model. The game is played in two periods. In
the first period, player A proposes an allocation in Y that player B either accepts or rejects. In
the former case, player A’s proposal is realized, while in the latter case the game advances to the
second period, in which the players switch roles: player B proposes an allocation (xA, xB) and
player A either accepts or rejects it, with rejection resulting in disagreement.

13 Continuity of F does not really play a significant role here. It is easy to modify the following analysis to account
for discrete distributions.
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Arguably, the most paradoxical regularity emerging from the experimental data about this
game is that “a substantial percentage of rejected offers were followed by disadvantageous
counterproposals” (Ochs and Roth, 1989, p. 376).14 Interestingly, neither Stahl’s original model
with independent preferences nor our variation with negatively interdependent preferences can
reconcile this evidence with equilibrium behavior. The reason is that the standard Stahl (1972)
model posits that if B’s proposal is accepted in the second period, player B of type θB achieves a
utility level of δBuB(xA, xB | θB), where δB ∈ (0, 1) is player B’s discount factor. Therefore, by
(1), a necessary condition for B to reject A’s initial offer (xA, xB) in equilibrium is

uB(xA, xB | θB) = VB

(
xB,

xB

m
| θB

)
≤ δB VB

(
yB,

yB

m
| θB

)
= δBuB(yA, yB | θB), (4)

where (yA, yB) ∈ Y is the second-period equilibrium offer of type θB . But since sequential
rationality ensures yB ≥ rB(θB), i.e., uB(yA, yB | θB) ≥ 0, the monotonicity of VB and (4) jointly
imply that yB ≥ xB for all δB ∈ [0, 1].

This argument, however, depends crucially on the assumption that individuals’ utilities are
discounted through periods. By contrast, in the experiments, the entire game lasts only a short
time; it is rather the size of the pie that is discounted through the offer periods. Thus, we can
reasonably assume that the subjects incur no cost due to the passage of real time, that is, if the
game ends in agreement at the second stage, and the pie shrinks from size k to size δk, the utility
of player i is ui (xA, δi k − xA | θi ) instead of δi ui (xA, k − xA | θi ).15

While inessential under the hypothesis of money-maximizing behavior, the different
treatment of time in the standard theoretical model and the game played in the experiments
turn out to be crucial for the presence of disadvantageous counteroffers in the present setup. To
see why, let us assume that, as in the experiments, if B rejects A’s offer, the game enters a second
stage, in which the net pie shrinks from 2m − 2 to δ(2m − 2), and B proposes a division in the set

Y (δ) ≡ {(yA, yB) ≥ (1, 1) : yA + yB = 2 + δ(2m − 2)},

where δ ∈ (0, 1] stands for the common rate at which the pie is discounted.
For simplicity, consider the case in which the player i is either of type 0 or of type �i > 0, that

is, Ti = {0, �i}, i = A, B.16 Recall that by Assumption 1 and (2), we have ri (�i ) > ri (0) = 1.
The beliefs of player i about player j are represented by a number π j ∈ [0, 1] interpreted as
π j ≡ prob[θ j = � j ]. That is, πA is the probability B assigns to the event A is negatively
interdependent, and similarly for πB . It is important to note that if the game enters the second
stage, and B proposes (yA, yB) ∈ Y (δ), the utility of player i is Vi (yi , yi/[1 + δ(m − 1)] | θi ) if A
accepts, and zero otherwise.

Of course, if πA = πB = 0, then the model collapses into a complete-information bargaining
game with independent preferences. It is readily verified that in the unique subgame-perfect
equilibrium of this game, player A proposes (1+(1−δ)(2m−2), 1+δ(2m−2)) in the first period,
and player B accepts. Following Bolton (1991), we shall refer to this allocation as the pecuniary
equilibrium from now on. In turn, when πA, πB > 0, the model carries the basic features of a
signalling game, thus admitting a great many perfect Bayesian equilibria. We shall show below
that some of these equilibria are perfectly consistent with all the experimental regularities and, in
particular, with the occurrence of disadvantageous counteroffers.

14 To be precise, we note that the 125 first-offer rejections in the Ochs-Roth experiments were followed by 101
disadvantageous responses.

15 While discounting the size of the pie is quite common in experimental studies, sometimes the designers have
discounted the value of the share of a player (Ochs and Roth, 1989). In this case, if the game ends in agreement at the
second stage, the utility of player i is ui (δA(k − xA), δB (k − xB ) | θi ). The analysis of this section applies, without
modification, to this case as well.

16 The analysis of the model and the results reported below would remain true with inessential modifications, if
we allowed for different discount rates and more than two types. We invoke these two assumptions here only to simplify
the exposition.
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FIGURE 2

Before stating the formal results, we provide a heuristic argument that shows how
disadvantageous counteroffers may arise in equilibrium. Consider Figure 2, in which the
bargaining sets Y and Y (δ) are plotted with some indifference curves for both players. The
independent type of each player does not care about his opponent’s share of the surplus: hence A’s
indifference curves are vertical if θA = 0, and B’s curves are horizontal if θB = 0. The indifference
curves of the negatively interdependent type of each player instead are upward sloping, since
their utility decreases if their opponent’s share increases. For instance, type �A of player A is
indifferent between receiving the disagreement outcome (1, 1) and the allocation y. Similarly,
type �B of B is indifferent between the allocations y and z1.

Now consider an allocation like x in Figure 2, and suppose that both types of A offer x in
the first period. If B is pessimistic enough, i.e., πA is high enough, then in any perfect Bayesian
equilibrium, he will propose the division y ∈ Y (δ) in the second stage, whatever his level of
interdependence, and both types of A would accept. Therefore, it will be optimal for type 0 of B
to accept the proposal x . But is it optimal for type �B of B to accept this offer when πA is high?
The answer is no, for if B rejects x and offers y in the second period, she is certain that both types
of A will accept her offer. Since type �B of B strictly prefers y to x (y is on a higher indifference
curve than is x), type �B will indeed reject A’s offer x and counteroffer y in the second stage.
But notice that y is a disadvantageous counteroffer for B; that is, xB > yB!

This argument suggests that disadvantageous counteroffers should not be considered
paradoxical when we allow for potentially negatively interdependent preferences. Indeed, we
have the following:

Proposition 2. Under Assumption 1, there exist πA, πB ∈ (0, 1) such that, for all δ ∈ (0, 1),
the two-period alternating-offer bargaining game described above admits a continuum of many
pure-strategy perfect Bayesian equilibria that have the following features:

(i) both types of A make the same initial offer;
(ii) type 0 of B accepts while type �B of B rejects and makes a disadvantageous counteroffer

in the second period, which both types of A accept;17

17 Daughety (1994) has anticipated this result by means of providing a concrete example.
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(iii) there exists δ̄ ∈ [0, 1) such that A’s initial offer deviates from the pecuniary equilibrium
in the direction of 50-50 division for all δ ≥ δ̄; and

(iv) we have

lim
δ→1

x(δ, θ) = (rA(�A), 2m − rA(�A)) for all θ ∈ {0, �A} × {0, �B},

where x(δ, θ) denotes the equilibrium allocation at state θ .

Proof. See the Appendix.

Proposition 2 is interesting in that it shows that the bargaining model at hand is capable of
predicting the rejection of first-period offers that are followed by disadvantageous counteroffers
in equilibrium.18 Moreover, this result shows that one should not be surprised to see opening
offers in the experiments that deviate toward the 50-50 division when δ is sufficiently high. Of
course, not all equilibria possess these properties; there are many other equilibria of the game than
those mentioned in Proposition 2. The point is that when we model the bargaining experiments by
using negatively interdependent preferences with one’s degree of interdependence being private
information, what seems like paradoxical play becomes perfectly reasonable equilibrium behavior.
In a qualitative sense, then, we would like to argue that the present model fits the data fairly well.

Two objections can be raised at this point about the equilibria identified by Proposition 2. In
these equilibria, all counteroffers are disadvantageous and are always accepted in the second stage.
Indeed, experimental results show that this is not the case: both advantageous and disadvantageous
counteroffers are observed, and both kinds are turned down, albeit infrequently, forcing the game
to end in this agreement. We note that the only reason why Proposition 2 falls short of predicting
these two additional features in equilibrium is our parsimonious way of modelling incomplete
information here.

To drive this point home, consider the following slightly richer scenario in which player A
has four types, θ3

A > · · · > θ0
A = 0, and player B has three types, θ2

B = θ1
B > θ0

B = 0. We assume
that all four types of A have the same beliefs about B’s type, while types θ2

B and θ1
B of B hold

different beliefs. (So the beliefs, not the preferences, distinguish these types from each other.)19

The beliefs of types θ0
B and θ1

B about A’s type are given by a probability vector πA ≡ (π0
A, . . . , π3

A),
where π

j
A ≡ prob[θA = θ

j
A]. In turn, the beliefs of type θ2

B are given by another probability vector
ρA ≡ (ρ0

A, . . . , ρ3
A), where ρ

j
A is the probability assigned by θ2

B to the event that A is of type θ
j
A.

Finally, the beliefs of all types of A are represented by a probability vector πB ≡ (π0
B, π1

B, π2
B),

where π
j
B ≡ prob[θB = θ

j
B]. In this setup, we can improve Proposition 2 to the following:

Proposition 3. Under Assumption 1, there exist probability vectors πA, ρA, and πB such that
for all δ ∈ (0, 1), the two-period alternating-offer bargaining game described above admits a
continuum of many perfect Bayesian equilibria in which both advantageous and disadvantageous
counteroffers are made and rejected with positive probability.

Proof. See the Appendix.

We note that the outcome-fairness properties of the equilibria mentioned in Propositions 2
and 3 are in line with the main thesis of the article. Negative interdependence endogenizes the
fear of rejection a bargainer may have, and this, in turn, leads to relatively fair outcomes. Since
the presence of discounting shadows the potential of making comparisons with the pecuniary
equilibrium, however, here we can make such a comparison only for large δ. In this case, all

18 As for belief-based refinement properties of these equilibria, we should note that they satisfy the intuitive criterion
of Cho and Kreps (1987).

19 The careful reader will notice that this formulation departs from the unidimensional way we have modelled the
types of agents so far in the article. Indeed, apart from Proposition 3, all of our results are proved in a context where a
“type” corresponds to a particular utility function, whereas for Proposition 3, we distinguish between two types on the
basis of their beliefs. However, this is obviously a minor point. We have chosen here to model the type spaces as subsets
of the real line in the general development only to achieve clarity of the exposition.
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equilibria in Proposition 2 envisage a deviation of both the opening offers and the equilibrium
allocations toward the 50-50 division. This is seen most clearly by comparing part (iv) of
Proposition 2 with the fact that the pecuniary equilibrium converges to (1, 2m − 1) as δ → 1.

In closing, let us pose the following important question: How serious is the possibility of
observing disadvantageous counteroffers in the real world? The present model points out that this
may depend on the nature of discounting. Recall that Propositions 2 and 3 are obtained under
the assumption that time discounts the pie, not the utilities. So in bargaining contexts in which
rejections result in the physical reduction of the size of the gains from trade (as would be the case
if rejections could result in strikes), the occurrence of disadvantageous counteroffers may well be
expected. By contrast, in a variety of actual bargaining situations, the passage of real time affects
the utilities of the bargainers instead of the physical size of the gains from trade. As shown earlier,
in this case disadvantageous offers cannot arise in any equilibrium of the present setup. This, in
turn, yields a sharp prediction: In a finite-horizon bargaining environment with utility discounting
(which would take place through real time), disadvantageous counteroffers will not be observed.
It will be very interesting to evaluate the validity of this prediction through experiments that use
real time by design.

5. Infinite-horizon bargaining

� The findings of the previous two sections suggest that enriching bargaining games with
the potential presence of negatively interdependent preferences can indeed be useful. However,
while these findings allow us compare the predictions of the proposed models with those of the
experiments, they do not apply to more realistic bargaining scenarios, with potentially infinite
duration. It is important to study infinite-horizon bargaining games because in many situations
that involve substantial gains from trade, it would be unrealistic to postulate that bargainers could
credibly commit themselves not to trade just because a certain amount of time has elapsed.

Consequently, in this section we shall extend our treatment to the context of a standard
infinite-horizon bargaining model, the so-called one-sided offers model with one-sided private
information.20 The basic primitive of this setting is the following concession game: player A,
whose type θA is common knowledge, makes all the offers, while player B, who has private
information about his type θB , can only accept or reject. If no offer is ever accepted, then the
outcome of the game is the disagreement outcome, and if a proposal x ∈ Y is accepted in period
t , the utility of player i is δt−1ui (xA, xB | θi ), where δ ∈ (0, 1) is the common discount rate.21 As
is standard, we assume in what follows that TB = [0, θB].

Unfortunately, the complexity of this game does not allow for a telling analysis in the case
of the general specification of preferences as given in (1). For this reason, we shall adopt here the
following simple one-parameter specification:

ui
(
xA, xB | θi

)
≡ (1 − θi ) xi + θi

xi

(xA + xB) /2
− 1, i = A, B, (5)

where (xA, xB) ∈ X and 0 ≤ θi < 1. To see the usefulness of this specification (which is easily
checked to satisfy Assumption 1), observe that since the equilibrium is invariant under linear
transformations of ui , we may instead take the utility function of individual i of type θi as

vi
(
xA, xB | θi

)
≡ r (θi ) ui

(
xA, xB | θi

)
,

20 Interestingly, the qualitative nature of our findings remains valid in the classical Rubinstein (1982) model. That
is, in this model as well, allowing for the possibility of interdependent preferences generates results consistent with the
commonly observed high frequency of “fair divisions.” For the formal analysis of the Rubinstein model with interdependent
preferences, we refer the reader to Lopomo and Ok (1998).

21 Again we assume that the players have the same discount factor for simplicity. Modifying the analysis in the
case of distinct discount factors is straightforward.
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where

r (θi ) ≡ (1 − θi + θi/m)−1 ∈ (1, m)

is the reservation amount of individual i of type θi . It follows from (5) that

vi
(
xA, xB | θi

)
= xi − r (θi ) for all (xA, xB) ∈ Y.

Thus, given (5), the present model is essentially identical to the standard buyer-seller bargaining
model. Indeed, if we think of player A as the owner of an indivisible object with value r (θA),
and of player B as the potential “buyer” with value 2m − r (θB), we can interpret any division
(xA, 2m − xA) in our model as a “sale” at price xA. Conveniently, this allows us to bring to bear a
number of major results established in the bargaining literature. While a similar correspondence
between the models also exists in the case of specifications more general than (5), these lead us to
buyer-seller models with nonlinear utilities, the analysis of which is well known to be extremely
difficult. This is the main reason why we use here the linear specification given in (5).

As usual, player A’s beliefs about B’s type are modelled through a distribution function
F : [0, �B] → [0, 1], where 0 < �B < 1. We assume that F is common knowledge and posit
the following technical condition:

Assumption 2. lim inf
θ→�B

1 − F(θ )
�B − θ

> 0.

This assumption is a very weak regularity condition that requires the slope of F to be bounded
away from zero near �B . For instance, if F is left-differentiable at �B and F ′

−(�B) > 0, or if F
has a mass point on �B , then it satisfies Assumption 2. Intuitively speaking, all the Assumption 2
requires is that player A assign strictly positive probability to the event that player B is arbitrarily
close to being the most negatively interdependent type possible.

Given Assumption 2, it can be shown that a perfect Bayesian equilibrium of the game at hand
exists. In fact, under this assumption, one equilibrium may differ from another only with respect
to the first-period proposal of player A; the equilibrium is generically unique. What is more, as
the time interval between offers gets very small (i.e., as the offers take place very quickly), all
equilibrium first-period offers converge to a unique allocation:

Proposition 4. Given Assumption 2, consider any perfect Bayesian equilibrium of the concession
game defined above, and denote the corresponding equilibrium sequence of offers made by player
A (conditional on the discount rate and the type space of B by {xt (δ, �B)}∞t=1 ∈ Y∞. We have

lim
δ→1

x1(δ, �B) = (2m − r (�B) , r (�B)) .

Proof. See the Appendix.

Proposition 4 says that if player A assigns positive probability, however small, to the event
that B is maximally negatively interdependent, then, as the interval between offers becomes small,
his strategy becomes close to the strategy that he would use were he certain that B’s reservation
amount is near r (�B), that is, his first offer becomes close to the allocation that will be accepted
even by the maximally negatively interdependent type, and the probability that the game ends
immediately converges to one. In particular, if player A thinks that B may be the most competitive
type who is almost indifferent between 50-50 division and the disagreement outcome (i.e., if �B

is close to 1), then the equilibrium outcome is (almost) the 50-50 split, no matter how unlikely A
may think this event really is:

lim
�B→1

lim
δ→1

x1 (δ, �B) = (m, m) .

This shows, again, the effectiveness of using negatively interdependent preferences to incorporate
the reasoning of a proposer who fears rejection, which, in turn, forces fair outcomes. We would
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like to stress, however, that this is a deeper observation than the findings of the previous two
sections. It may not be terribly surprising that spiteful preferences might lead to fair outcomes.
But this result shows that in a variety of contexts, even the slightest doubt in the mind of the
proposer about the excessively spiteful nature of the responder would force fair divisions to
materialize with probability one. Very fair outcomes may thus be rational, after all.

Proposition 4 is essentially a corollary of a well-known result in bargaining theory. Indeed, as
noted earlier, the concession game described above can be shown to correspond to the single-sale
bargaining model with one-sided incomplete information. The limit result stated in Proposition 4
then corresponds to the famous Coase conjecture, which states that the seller’s expected gain from
trade tends to its lowest possible value when the frequency of price offers becomes arbitrarily
large. But the validity of this conjecture (as a unique equilibrium outcome) depends on whether
or not it is common knowledge that mutually beneficial agreements exist. Interestingly, here we
have r (θA) + r (�B) < 2m for all θA ∈ [0, 1], so our model corresponds to the so-called gap
case of the single-sale model (see Fudenberg and Tirole, 1991), in which beneficial trade exists
with certainty. Consequently, the related results of Fudenberg, Levine, and Tirole (1985) and Gul,
Sonnenschein, and Wilson (1986) that establish the uniqueness of equilibrium and the validity
of the Coase conjecture in the gap case of the single-sale model entail our Proposition 4. (The
details of this claim are found in the Appendix.)

In passing, we note that extending the present model to allow for two-sided offers and/or
two-sided incomplete information introduces a vast multiplicity of equilibria. For instance, in
any alternating-offers game with incomplete information, many allocations can be sustained as
equilibrium outcomes, simply by making each player’s beliefs concentrated on the independent
type of his opponent off the equilibrium path. (Under these beliefs, the only constraint acting
on the equilibrium strategies is the sequential rationality on the equilibrium path.) Nevertheless,
by suitably refining the sequential equilibria, one may identify those equilibria that have the
property that A’s initial offer converges to (2m − r (�B), r (�B)) as δ → 1. Indeed, in both the
alternating-offers game with one-sided private information (Gul and Sonnenschein, 1988), and
in the concession game with two-sided private information (Cho, 1990), all equilibria that satisfy
certain monotonicity and stationarity properties exhibit the Coase property.

6. Bargaining by arbitration

� In this section we depart from the “positive” analysis of bargaining among negatively
interdependent players and adopt a normative approach. This is of interest because in many
instances of real-world bargaining, negotiations are brought to an end by a settlement guided by
a third party. A natural question, then, is this: If an arbitrator realizes that players may possess
negatively interdependent preferences, how should she resolve the pie-division problem? More
specifically, we wish to see if there is any reason to suspect that the potential interdependence of
preferences would enforce the emergence of egalitarian outcomes in bargaining settlements. To
address this issue, we adopt a mechanism-design approach.

As in the previous sections, we consider Ti ⊆ [0, �i ] as the type space of individual i for
some �i > 0, i = A, B, that is, Ti stands for the set of all preferences that the arbitrator conceives
as admissible for individual i . The product T ≡ TA × TB then corresponds to the set of all states
of nature.

A social-choice function is any function that assigns to a state of nature a particular division
of the pie. Formally, we define a social-choice function (SCF) on T as any function f : T → Y .
Thus, f (θA, θB) stands for the (efficient) division of the pie that the arbitrator would choose, had
she known that the true utility (type) of player i was θi .22 As is usual, we say that f is individually
rational if f does not allocate to any type a share that is strictly below its reservation amount, i.e.,

22 Alternatively, we may define a SCF on T as mapping a type profile (θA, θB ) to a 3-tuple (x, t) ∈ Y ×Z+, where
(x, t) denotes the allocation awarded to players at period t . In this case, our definition of a SCF would postulate implicitly
the property of ex post efficiency.
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if

ui ( f (θA, θB) | θi ) ≥ 0 for all θi ∈ Ti , i = A, B.

Needless to say, individual rationality is a participation constraint that needs to be satisfied by
any reasonable settlement.

We now ask if it is possible here to implement a SCF in dominant strategies.23 While it is
well known that this is in general impossible (the Gibbard-Satterthwaite theorem), it is easily seen
that the restricted domain we consider here admits individually rational SCFs that are dominant
strategy implementable. For instance, the SCF that assigns to any type profile the equal split of
the pie is individually rational and dominant strategy implementable. Our next result provides a
characterization of all such SCFs.

Proposition 5. A SCF f on T is individually rational and dominant strategy implementable if
and only if

f (θA, θB) ≥
(

sup
θA∈TA

r (θA), sup
θB∈TB

r (θB)

)
for all (θA, θB) ∈ T .

Proof. See the Appendix.

Proposition 5 shows that if the domain of a SCF includes highly negatively interdependent
preferences, then that SCF must choose highly egalitarian outcomes at all states of nature. For
instance, if Ti = [0, �i ], Assumption 1 holds, and ri (�i ) = m, then Proposition 5 yields that the
only SCF f on T that is individually rational and dominant strategy implementable is the constant
function defined as

f (θA, θB) = (m, m) for all (θA, θB) ∈ T .

Put differently, if the class of all negatively interdependent preferences considered by the arbitrator
is sufficiently rich, then the only possible SCF is the one that assigns the 50-50 division regardless
of the state of nature.24 This observation provides a rigorous normative rationale for the equal-split
solution, the applications of which arise abundantly in daily life. For instance, consider a parent
who has to divide the last slice of the pie among two siblings. It would not be unreasonable to
expect that the parent will divide the pie equally (to the best of her abilities) to avoid any possible
conflict between the siblings that may arise due to envious feelings. Proposition 5 suggests a
rigorous foundation precisely for this decision rule. The intuition is the same one that underlies
all of our results. Interdependence entails a fear of rejection, in the present case on the part of the
arbitrator through the individual-rationality constraints. This, in turn, forces a fair settlement.

7. Concluding comments
� Admitting the possibility of negatively interdependent preferences may not be the only way
one can modify standard bargaining models to obtain predictions consistent with experimental
evidence. Nevertheless, the combination of negatively interdependent preferences and private
information does provide a non–ad hoc way of modelling the notion of fear of rejection that is
likely to be present in the actual strategic reasoning of a bargainer. We have shown here that
this, in turn, yields a useful model that is capable of accommodating the observed experimental
regularities in bargaining games and provides a rational theory of fair outcomes. Moreover, the
idea of negatively interdependent preferences, which is already in use in other areas of economics,

23 A mechanism is any list ({Z A, Z B}, h) where Zi is an arbitrary message space and h : Z A × Z B → Y is an
arbitrary outcome function. Such a mechanism is said to implement the SCF f on T in dominant strategies if and only if
the two-person normal-form game ({Zi , ui (h(· | θi )}i=A,B ) has a dominant strategy equilibrium z(θA, θB ) ∈ Z A × Z B

such that h(z(θA, θB )) = f (θA, θB ), for all (θA, θB ) ∈ T .
24 One certainly does not need the type space of player i to be “too large” for this result to hold. If, for instance,

Ti contains all of the affine utility functions considered in Section 5, then the result goes through.
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seems particularly appropriate in bilateral bargaining contexts. Indeed, it is hardly unreasonable
to think that competitive feelings may arise and influence the players’ choices in such situations.

Having said this, however, let us note that we have considered in this article only negative
interdependence, ignoring completely the possibility of positive interdependence. While this
modelling strategy is useful in focusing on matters related to fear of rejection, it falls short of
letting us cover in a sensible way many interesting games that are not of the bilateral bargaining
form. For instance, if the dictator game were played by negatively interdependent players, the
unique outcome would be none other than the dictator sparing the entire surplus to himself.
Since in the related experiments more than half of the individuals are observed to make interior
divisions (with several 50-50 splits), one may argue that such experiments refute the negative
interdependence hypothesis.

The validity of this conclusion depends on what one really means by the “negative inter-
dependence hypothesis.” If this hypothesis is taken to suggest that individuals behave in all of their
strategic (or otherwise) encounters under the guidelines of spite, then clearly it cannot be taken
seriously; the experimental findings shoot down this universal interpretation with ease. From this
global perspective, then, the present contribution is meaningful only in a ceteris paribus sense. A
complete model that would yield good predictions in nonbargaining environments as well should
presumably model individuals in a way that includes both positive and negative interdependence.25

On the other hand, if one subscribes to the negative interdependence hypothesis, as we do, in
a narrower sense that applies only with regard to a certain “class” of games (namely, the bargaining
games), the conceptual standpoint of our contribution is stronger. From this viewpoint, the basic
hypothesis acts as a useful means to model the competitive nature of the bargainers that may well
surface in face-to-face bargaining situations in which each party may hurt the other. This in turn
yields a good number of theoretical results that may provide a basis for a rational theory of fair
outcomes.26

Provided that one adopts this narrower viewpoint, then—and admittedly only then—the
dictator game does not provide a suitable testing ground, precisely because there is no second-
mover in this game; the modelled scenario does not really correspond to a bargaining environment.
As noted earlier, we view negatively interdependent preferences as a means to model the
competitive nature of the bargainers that may surface in face-to-face bargaining situations. The
only upshot of the present article is to suggest formally that modelling agents as negatively
interdependent enriches the standard model by including, endogenously, the notion of fear of
rejection. Since this notion is absent in the dictatorship game, there is no reason to even apply the
negatively interdependent model to this nonstrategic situation. Our approach makes sense only in
contexts where fear of rejection is likely to be inherent to one’s strategic behavior, as in bargaining
games: nothing more, nothing less. Consequently, we contend that the right experimental test of
the negative interdependence hypothesis must be conducted in a bargaining setting. Whether such
tests will eventually falsify the theory we advance here is a question that should be addressed in
future experimental work.

Even if one agrees with our interpretation of the negative interdependence hypothesis, there
are several other directions for future research. First, it will be interesting to design experiments to
identify the predictive limitations of the finite-horizon bargaining models examined here. Second,
the infinite-horizon model with nonlinear negatively interdependent utility functions remains to
be investigated. This case is difficult since, unlike the model of Section 5, it is not necessarily
isomorphic to the standard buyer-seller bargaining model. In addition, the way the negatively
interdependent agents’ attitudes toward risk influence the bargaining outcomes needs to be further

25 Daughety (1994), for instance, provides precisely this sort of a model.
26 There is a caveat here. If the modeller is free to choose preferences in a game-dependent manner, then the model

clearly loses much of its predictive power. However, this does not mean that one “must” therefore focus on universal
models of preferences. There is a compromise approach in which one examines the suitability of certain preference
structures for certain classes of games. Provided that these classes are large enough, one may have sufficient predictive
power along with a tractable model of decision-making. It is this strategy that we follow in the present article by focusing
on the large class of all bilateral bargaining games.
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explored. Third, one should study how the alternative interdependence hypotheses (based on
“positive and negative interdependence” as in Daughety (1994), on “inequality aversion” as in
Fehr and Schmidt (1999), or on “equity focus” as in Bolton and Ockenfels (2000)) would alter
the results reported here. Finally, the analysis of multilateral bargaining with possibly negatively
interdependent preferences is left for future research.

Appendix

� This Appendix contains the proofs of the main results reported in the text.

Proof of Proposition 2. Let k denote the size of the pie net of the bargainers’ holdings, that is, set k ≡ 2m − 2. Since V
is strictly increasing and continuous, (1) and V (1, 1 | �A) = 0 imply that there exists a unique α ∈ (0, 1) such that

u A
(
1 + (1 − α) δk, 1 + αδk | �A

)
= 0.

Clearly, α is the maximum share for B that both types of A will accept. Throughout this proof we shall let

(yA, yB ) ≡ (1 + (1 − α)δk, 1 + αδk) .

We define next the functions ω : {0, �B} → (0, 1) and ω̂ : {0, �B} → (0, 1) by

u B
(
1 + (1 − ω (θB )) k, 1 + ω (θB ) k | θB

)
= u B

(
yA, yB | θB

)
(A1)

and

u B
(
1 + (1 − ω̂ (θB )) k, 1 + ω̂ (θB ) k | θB

)
= u B

(
1, 1 + δk | θB

)
, (A2)

respectively. One can think of ω (θB ) as the minimum share for B that type θB will accept in stage 1, provided that B has
sufficiently pessimistic beliefs about A’s type (i.e., πA is high enough). In contrast, ω̂(θB ) is the minimum share for B
that type θB will accept in stage 1, provided that B is sufficiently optimistic about A’s type.

Claim A1. αδ = ω(0) < ω(�B ) and δ = ω̂(0) < ω̂(�B ).

Proof. Since u B (·, · | 0) is independent of its first argument, equation (A1) readily yields ω(0) = αδ. But then, by (1) and
(A1),

V

(
1 + ω (�B ) k,

1

m
(1 + ω (�B ) k) | �B

)
= V

(
1 + ω (0) k,

1

1 + δ(m − 1)
(1 + ω (0) k) | �B

)
.

Since m > 1 + δ(m − 1) for all m > 1 and δ ∈ [0, 1), by strict monotonicity of V , we must then have ω(�B ) > ω(0).
The second part of the claim is proved similarly. Q.E.D.

Claim A2. There exists an ω∗ ∈ (ω(0), min{ω(�B ), ω̂(0)}) such that

u A
(
1 +

(
1 − ω∗) k, 1 + ω∗k | �A

)
> 0.

Proof. Since 1 − αδ > (1 − α)δ and ω(0) = αδ, by definition of α, we have

u A(1 + (1 − ω(0))k, 1 + ω(0)k | �A) = u A(1 + (1 − αδ)k, 1 + αδk | �A)

> u A(1 + (1 − α)δk, 1 + αδk | �A)

= 0.

So, since min{ω(�B ), ω̂(0)} > ω(0) by Claim A1, the result follows by continuity. Q.E.D.

Take any ω0 ∈ (ω(0), ω∗), where ω∗ is as found in Claim A2. We propose the following assessment as a candidate
for a pure-strategy perfect Bayesian equilibrium.

Strategy of A. Both types of A offer

(xA, xB ) ≡ (1 + (1 − ω0)k, 1 + ω0k) ∈ Y
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in stage 1. In case of rejection, each type of A responds optimally to B ’s offer in stage 2, that is, type 0 accepts any
feasible offer z ∈ Y (δ), while type �A accepts z = (z A, zB ) ∈ Y (δ) if z A ≥ rA(�A) and rejects if z A < rA(�A).

Strategy of B. If A offers (1 + (1 − ω)k, 1 + ωk) in stage 1, then type 0 of B

{
accepts if ω = ω0 or if ω0 �= ω > ω̂(0),

rejects and proposes (1, 1 + δk) if ω0 �= ω ≤ ω̂(0)
and type �B of B






rejects and proposes (yA, yB ) if ω = ω0,

accepts if ω0 �= ω > ω̂(�B ),

rejects and proposes (1, 1 + δk) if ω0 �= ω ≤ ω̂(�B ).

Beliefs. After any off-equilibrium offer z �= (xA,xB ), the beliefs of both types of B are degenerate on θA = 0.27 On the
equilibrium path, i.e., after A offers (xA,xB ), Bayes’ rule applies, hence B still believes that θA = �A with probability
πA .

In what follows we shall show that there exist πA, πB ∈ (0, 1) such that the above assessment is a perfect Bayesian
equilibrium. It is readily verified that this will complete the proof of Proposition 4. In particular, notice that the above
assessment specifies a disadvantageous counteroffer for B on its equilibrium path since αδ = ω(0) < ω0.

To establish sequential rationality, take any πA ∈ (0, 1) such that

πA > 1 − max
θB∈{0,�B}

u B
(
yA, yB | θB

)

u B
(
1, 1 + δk | θB

) . (A3)

Given the strategy of player A in the second stage, the decision problem of type θB of B in the second stage is

max
γ∈[α,1]

{
(1 − πA)u B (1 + (1 − γ )δk, 1 + γ δk | θB ) if γ ∈ (α, 1],

u B (yA, yB | θB ) if γ = α.

Therefore, (A3) ensures that the optimal offer of both types of B is (yA, yB ) ∈ Y (δ) in the second stage.

Sequential rationality for B. Since αδ = ω(0) < ω0, we have

u B
(
1 + (1 − α)δk, 1 + αδk | 0

)
< u B

(
1 + (1 − ω0)k, 1 + ω0k | 0

)
.

Thus, accepting A’s offer is optimal for type 0 of B. On the other hand, by (A1) and since ω0 < ω(�B ),

u B (yA, yB ) = u B
(
1 + (1 − ω (�B )) k, 1 + ω(�B )k | �B

)

> u B
(
1 + (1 − ω0) k, 1 + ω0k | �B

)
,

so that it is optimal for type �B of B to reject A’s offer and to counteroffer (yA, yB ) in the second stage.
It is also clear that B’s strategy is sequentially rational for both types θB ∈ {0, �B} after any off-equilibrium offer

z �= (xA,xB ), since the beliefs about A’s type become degenerate on θA = 0.

Sequential rationality for A. We need to show that offering (xA, xB ) ≡ (1 + (1 − ω0)k, 1 + ω0k) in stage 1 is optimal for
both types of A. Suppose A proposes (1 + (1−ω′)k, 1 + ω′k), where ω0 �= ω′ ∈ [0, 1]. Then, given the belief structure, if
ω′ < ω̂(0), the offer is rejected and A is offered (1, 1+δk) in stage 2. Thus, both types of A earn zero utility in this case. But
since ω0 < ω∗, by Claim A2 above we have u A(xA, xB | θA) > 0 for any θA ∈ {0, �A}; moreover, u A(yA, yB | θA) ≥ 0
for any θA ∈ {0, �A}. Thus both types of A obtain strictly positive expected utility on the equilibrium path.

Suppose now that ω′ ∈ [ω̂(0), ω̂(�B )). In this case, type 0 of player B accepts A’s offer, while type �B rejects
and counteroffers (1, 1 + δk) in the second stage; hence A’s expected utility from offering ω′ ∈ [ω̂(0), ω̂(�B )) is
(1 − πB )u A(1 + (1 − ω′)k, 1 + ω′k | θA). Since ω0 < ω∗ < ω̂(0) ≤ ω′ and u A(yA, yB | θA) ≥ 0, we have

(1 − πB ) u A
(
xA, xB | θA

)
+ πB u A

(
yA, yB | θA

)
> (1 − πB ) u A

(
1 +

(
1 − ω′) k, 1 + ω′k | θA

)

for any θA ∈ {0, �A}. Hence, given the belief structure, offering (1 + (1 −ω′)k, 1 + ω′k) is not a profitable deviation for
either type of A in this case.

27 This degenerate specification of beliefs is not necessary, but convenient. All we need to require here is that B’s
off-equilibrium beliefs be sufficiently optimistic.
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Finally, assume that ω′ ≥ ω̂(�B ). In this case, both types of B accept A’s offer. Therefore, to complete the proof
we need to show that

(1 − πB ) u A
(
xA, xB | θA

)
+ πB u A

(
yA, yB | θA

)
≥ u A

(
1 +

(
1 − ω′) k, 1 + ω′k | θA

)
(A4)

holds for any θA ∈ {0, �A}. Since ω′ > ω0, we again have

u A
(
xA, xB | θA

)
> u A

(
1 + (1 − ω′)k, 1 + ω′k | θA

)
.

Thus, if (1 − α)δ ≥ 1 − ω′, then u A(yA, yB | θA) ≥ u A(1 + (1 − ω′)k, 1 + ω′k | θA) and (A4) must hold for all
θA ∈ {0, �A}.28 Assume then that (1 − α)δ < 1 − ω′, so that u A(yA, yB | 0) < u A(1 + (1 − ω′)k, 1 + ω′k | 0). There
are two possibilities to consider: (i) u A(yA, yB | �A) < u A(1 + (1 − ω′)k, 1 + ω′k | �A), and (ii) otherwise. In case (i),
(A4) is established for all θA by choosing any πB ∈ (0, 1) such that

πB ≤ min
θA∈{0,�A}

u A(xA, xB | θA) − u A(1 + (1 − ω̂(�B ))k, 1 + ω̂(�B )k | θA)

u A(xA, xB | θA) − u A(yA, yB | θA)
,

since ω′ ≥ ω̂(�B ). In case (ii), on the other hand, the proof is completed upon choosing any πB ∈ (0, 1) such that

πB ≤ u A(xA, xB | 0) − u A(1 + (1 − ω̂(�B ))k, 1 + ω̂(�B )k | 0)

u A(xA, xB | 0) − u A(yA, yB | 0)
.

Q.E.D.

Proof of Proposition 3. Proceeding as in the proof of Proposition 2, define α j through the equation

u A

(
1 +

(
1 − α j

)
δk, 1 + α j δk | θ

j
A

)
= 0 (A5)

for j = 0, . . . , 3. Clearly, α j is the maximum share of the net pie that B can get in the second period if A’s type is θ
j
A .

Letting (y j
A, y j

B ) ≡ (1 + (1 − α j )δk, 1 + α j δk); for j = 0, . . . , 3, we have

u B (y2
A, y2

B | θB )
[
1 − π3

A

]
≥ max

{

u B (y j
A, y j

B | θB )
j∑

i=0

π i
A : j = 0, . . . , 3

}

, θB = θ0
B , θ1

B (A6)

and

u B

(
y1

A, y1
B | θ2

B

) [
ρ0

A + ρ1
A

]
≥ max

{

u B

(
y j

A, y j
B | θ2

B

) j∑

i=0

ρi
A : j = 0, . . . , 3

}

, (A7)

provided that ρ1
A and π2

A are sufficiently close to one. Thus, if A’s initial proposal does not reveal any additional information
about θA , it is optimal in the second stage for the type θ2

B of B to propose (y1
A, y1

B ) and for θ0
B and θ1

B to propose (y2
A, y2

B ).

The first-period reservation share ω(θ j
B ) of type θ

j
B is then defined by

u B

(
1 +

(
1 − ω(θ j

B )
)

k, 1 + ω(θ j
B )k|θ j

B

)
= u B

(
y2

A, y2
B |θ

j
B

)
, j = 0, 1,

whereas

u B

(
1 +

(
1 − ω(θ2

B )
)

k, 1 + ω(θ2
B )k | θ2

B

)
= u B

(
y1

A, y1
B | θ2

B

)
.

Finally, we define the off-equilibrium reservation shares ω̂(θ j
B ), j = 0, 1, 2, by

u B

(
1 +

(
1 − ω̂(θ j

B )
)

k, 1 + ω̂(θ j
B )k | θ

j
B

)
= u B

(
1, 1 + δk | θ

j
B

)
.

Clearly, ω̂(θ j
B ) is the minimum share that θ

j
B accepts if she is convinced that A is independent.

The following two claims can be established by mimicking the steps of Claims A1 and A2 in the proof of Proposi-
tion 2.

28 Therefore, for high δ we do not have to put any restriction on the beliefs of A. In particular, for such δ, we may
let πA = πB .
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Claim A3. α2δ = ω(θ0
B ) < ω(θ1

B ), and δ = ω̂(θ0
B ) < ω̂(θ1

B ).

Claim A4. There exists ω∗ such that ω(θ0
B ) < ω∗ < min{ω(θ1

B ), ω̂(θ0
B ), δα1} and

u A

(
1 +

(
1 − ω∗) k, 1 + ω∗k | θ

j
A

)
> 0, for each j = 1, 2, 3.

Take any ω0 ∈ (ω(θ0
B ), ω∗), where ω∗ is as found in Claim A4. We propose the following assessment as a candidate

for a perfect Bayesian equilibrium.

Strategy of A. Each type θ
j
A , j = 0, . . . , 3, proposes (1 + (1 − ω0)k, 1 + ω0k) in the first stage, and, in case of rejection,

accepts (1 + (1 − α)δk, 1 + αδk) if and only if α ≤ α j , where α j is as defined in (A5).

Strategy of B. If A proposes (1 + (1 − ω0)k, 1 + ω0k) in stage 1, then type θB of B






accepts if θB = θ0
B ,

rejects and proposes (y2
A, y2

B ) if θB = θ1
B ,

rejects and proposes (y1
A, y1

B ) if θB = θ2
B .

If A’s initial offer is different from (1 + (1 − ω0)k, 1 + ω0k), then all types of B reject and counteroffer (1, 1 + δk).

Beliefs. After any off-equilibrium initial offer, the beliefs of all types of B are degenerate on θA = θ0
A . On the equilibrium

path, i.e., after A proposes (1 + (1−ω0)k, 1 +ω0k), each type of B keeps his beliefs unchanged in accordance with Bayes’
law.

Note that (y2
A, y2

B ) is a disadvantageous counteroffer, since y2
B = 1+ω(θ0

B )k < 1+ω0k, while (y1
A, y1

B ) is advantageous
since 1 + ω0k < 1 + ω∗k < 1 + α1δk = y1

A .
We now show that the assessment described above constitutes a perfect Bayesian equilibrium if ρ1

A , π2
A , and π0

B are
sufficiently close to one. As in the proof of Proposition 2, this amounts to verifying the sequential rationality of each
player’s strategy given their opponent’s strategy and the beliefs specified above.

Sequential rationality for B. The independent type of B accepts (1+(1−ω0)k, 1+ω0k) because u B (1+(1−ω0)k, 1+ω0k |
θ0

B ) > u B (y2
A, y2

B | θ0
B ) implies

u B

(
1 + (1 − ω0) k, 1 + ω0k | θ0

B

)
> u B

(
a2, Y − a2 | θ0

B

) [
1 − π3

A

]
.

Type θ1
B rejects and counteroffers (y2

A, y2
B ), because

u B

(
1 + (1 − ω0) k, 1 + ω0k | θ1

B

)
< u B

(
y2

A, y2
B | θ1

B

)

and hence

u B

(
1 + (1 − ω0) k, 1 + ω0k | θ1

B

)
< u B

(
y2

A, y2
B | θ1

B

) [
1 − π3

A

]
,

provided that π2
A is sufficiently close to one. Finally, type θ2

B rejects and counteroffers (y1
A, y1

B ) since

u B

(
1 + (1 − ω0) k, 1 + ω0k | θ1

B

)
< u B

(
y1

A, y1
B | θ1

B

) [
ρ0

A + ρ1
A

]
,

provided that ρ1
A is sufficiently close to one.

Sequential rationality for A. Recall that we have chosen the out-of-equilibrium beliefs so that if A’s first offer is
(1 + (1 − ω)k, 1 + ωk) with ω �= ω0, then all types of B become convinced that A is independent. Therefore A’s
expected utility is at most






u A((1 + (1 − ω̂(θ0
B ))k, 1 + ω̂(θ0

B )k) | θA) if ω̂(θ0
B ) ≤ ω ≤ 1,

π0
B u A(1 + (1 − ω0)k, 1 + ω0k | θA) if ω̂(θ1

B ) ≤ ω < ω̂(θ0
B ),

0 if 0 ≤ ω ≤ ω̂(θ1
B ).
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Consequently, type θ
j
A of A would have no incentive to deviate from (1 + (1 − ω0) k, 1 + ω0k), provided that

π0
B ≥

u A

((
1 +

(
1 − ω̂(θ0

B )
)

k, 1 + ω̂(θ0
B )k

)
| θ

j
A

)

u A

(
1 + (1 − ω0) k, 1 + ω0k | θ

j
A

) , for each j = 0, . . . , 3.

This completes the proof. Q.E.D.

Proof of Proposition 4. Let r (θ ) ≡ (1 − θ + θ/m)−1 and b(θ ) ≡ 2m − r (θ ) for all θ ∈ [0, �B ). Define

vA(x | θA) ≡ r (θA)u A(x | θA) and vB (x | θB ) ≡ b(θB )u B (x | θB )

for all x ∈ X . It follows from (5) that

vA(x | θA) = xA − r (θA) and vB (x | θB ) ≡ b(θB ) − xB for all x ∈ Y.

Let b ≡ b(�B ) > m and b ≡ b(0) = 2m − 1 > b. Define next the distribution function P : [b, b] → [0, 1] as
P ≡ 1 − (F ◦ b−1). P is the distribution function of the random variable b(·):

P(b) = prob(b(θ ) ≤ b) = 1 − F(b−1(b)), b ≤ b ≤ b.

The equilibrium outcomes of our model are, therefore, equivalent to those of the standard single-sale model in which the
seller with the known cost r (θA) makes (all) offers to the buyer whose valuation b is distributed on the interval [b, b]
according to the distribution function P (see Fudenberg and Tirole, 1991). Moreover, since �B < 1, this bargaining
model corresponds to the gap case: for all θA ∈ [0, 1],

r (θA) ≤ m < 2m − r (θB ) = b.

Consequently, if we can show that P−1 is Lipschitz continuous at zero, we may then apply Theorem 3 (and Remark 6.2)
of Gul, Sonnenschein, and Wilson (1986) to complete the proof. To see this, we use Assumption 2 to find a θ∗ ∈ (0, �B )
and K0 > 0 such that 1− F(θ ) > K0(�B − θ ) for all θ ∈ [θ∗, �B ). Since r is easily checked to be convex, we thus have

1 − F(θ ) > K0(�B − θ ) = K1r ′(�B )(�B − θ ) ≥ K1(r (�B ) − r (θ )), θ∗ ≤ θ < �B ,

where K1 ≡ K0/r ′(�B ). Therefore,

1 − F(b−1(b(θ ))) > K1(b(θ ) − b(�B )), θ∗ ≤ θ < �B ,

that is, P(b) > K1(b − b), b < b ≤ b∗ ≡ b(θ∗). Since P(b) = 0, we have q > K1(P−1(q) − P−1(0)) for all
q ∈ (0, P(b∗)]. Letting q∗ ≡ P(b∗) and K ≡ 1/K1, therefore, we find

∣∣∣P−1(0) − P−1(q)
∣∣∣ < K q, 0 < q ≤ q∗,

that is, P−1 is Lipschitz continuous at zero. Q.E.D.

Proof of Proposition 5. Suppose that f on T is individually rational and implementable in dominant strategies. By the
revelation principle, there must then exist a direct mechanism that truthfully implements f . This implies that we must
have

ui ( f (θA, θB ) | θi ) ≥ ui ( f (θ∗i , θ−i ) | θi ) for all θi , θ∗i ∈ Ti and θ−i ∈ T−i

for any i = A, B, and therefore

Vi

(
fi (θA, θB ),

fi (θA, θB )

m
| θi

)
≥ Vi

(
fi (θ

∗
i , θ−i ),

fi (θ∗i , θ−i )

m
| θi

)

for all θi , θ∗i ∈ Ti and θ−i ∈ T−i . Thus, by monotonicity of Vi ,

fi (θA, θB ) ≥ fi (θ
∗
i , θ−i ) for all θi , θ∗i ∈ Ti and θ−i ∈ T−i .
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Notice that fi must then be independent of its i th component, that is, fi (θ, θ−i ) = fi (θ ′, θ−i ) for any θ, θ ′ ∈ Ti and any
θ−i ∈ T−i . Consequently, we may write fi (θA, θB ) = ϕi (θ−i ) for all (θA, θB ) ∈ T for some function ϕi : T−i → Y . But
by individual rationality, we must have ϕi (θ−i ) ≥ r (θi ) so that fi (θA, θB ) = ϕi (θ−i ) ≥ supθi∈Ti

r (θi ) for all (θA, θB ) ∈ T ,
which completes the proof of the “only if” part. The validity of the “if” part of the proposition is self-evident. Q.E.D.
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