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Abstract: In this study, we observe that the poromechanical parameters in human meniscus vary
spatially throughout the tissue. The response is anisotropic and the porosity is functionally graded.
To draw these conclusions, we measured the anisotropic permeability and the “aggregate modulus”
of the tissue, i.e., the stiffness of the material at equilibrium, after the interstitial fluid has ceased
flowing. We estimated those parameters within the central portion of the meniscus in three directions
(i.e., vertical, radial and circumferential) by fitting an enhanced model on stress relation confined
compression tests. We noticed that a classical biphasic model was not sufficient to reproduce the
observed experimental behaviour. We propose a poroelastic model based on the assumption that
the fluid flow inside the human meniscus is described by a fractional porous medium equation
analogous to Darcy’s law, which involves fractional operators. The fluid flux is then time-dependent
for a constant applied pressure gradient (in contrast with the classical Darcy’s law, which describes
a time independent fluid flux relation). We show that a fractional poroelastic model is well-suited
to describe the flow within the meniscus and to identify the associated parameters (i.e., the order
of the time derivative and the permeability). The results indicate that mean values of λβ, β in the

central body are λβ = 5.5443× 10−10 m4

Ns1−β , β = 0.0434, while, in the posterior and anterior regions,

are λβ = 2.851× 10−10 m4

Ns1−β , β = 0.0326 and λβ = 1.2636× 10−10 m4

Ns1−β , β = 0.0232, respectively.
Furthermore, numerical simulations show that the fluid flux diffusion is facilitated in the central part
of the meniscus and hindered in the posterior and anterior regions.

Keywords: poromechanics experiments; confined compression test; human meniscus; fractional
darcy; constitutive model

1. Introduction

Human meniscus plays a key role in the functioning of the knee joint (Figure 1a). This
tissue has a number of functions, such as: load bearing (about 45–75% of the total load on
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the joint), joint stability and lubrication [1,2]. Degenerative processes of the meniscus, either
from injuries or ageing, affect approximately 35% of the population [3]. When required,
the most common surgical procedure is currently total/partial meniscectomy (i.e., removal
of the damaged tissue).

Figure 1. (a) Schematic representation of the knee joint; (b) the different regions of the meniscus: posterior horn, central
body, anterior horn and the three directions: vertical, radial and circumferential; (c) schematic representation of the confined
compression test set up, (d) example of the variability of the porosity within meniscal samples from µCT scans; and (e) the
results show that the central body of the meniscus exhibits higher permeability values.

It has been noticed that, although the knee joint can still function with the total/partial
absence of the meniscus, the loss of the meniscus leads to an increase in the contact stresses
on the tibial/femoral cartilage proportional to the amount of meniscal tissue removed [4].
The increase in contact stresses on the cartilage is one of the main factors of Osteoarthritis
(OA). Therefore, partial/total meniscal replacements are expected to help avoid articular
cartilage degeneration.

Currently, the clinical outcomes of these implants are not ideal [5] due to the fact that
they do not mimic the structure–property relationships of the tissue as these are still not well
understood [6]. Among many biologic tissues, the meniscal tissue is composed of porous
solid matrices—mainly collagen—with fluid filling the pores [7–10]. The overall mechanical
behaviour of this type of tissues depends not only on the solid matrix deformation, but
also on the movement of the fluid in and out of the collagen channels [7,8] during the
deformation.

Meniscal tissue exhibit a non-uniform and anisotropic porosity, which is related to
the graded material properties. Such graded material properties are fundamental for
the correct functioning of this tissue [8]. The investigation of the material properties,
coupled with the quantification of architectural parameters, such as the porosity and
channel interconnectivity, will enable the design of artificial cellular structure, which can
resemble the native behaviour of the tissue (see, for instance, [11]). More in depth, advanced
microscopy investigations highlighted that collagen bundles form the wall of channels,
which can be observed both at the macroscale and at the microscale [7,10]. Fluid is able to
flow inside these channels in response to physiological loading.
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Understanding and appropriately modelling the fluid flow behaviour in the different
portions of the meniscal tissue, considering a range of various loading conditions, is
essential to gain insight into the biomechanical function of this tissue. To date, limited
information is available on region-specific and anisotropic permeability in the meniscus,
which is essential to understand the fluid flow evolution and its relationship with the
internal architecture.

Poromechanics experimental tests, such as confined compression tests—including
both stress relaxation and creep—are currently used in order to characterize material
parameters, such as the elastic modulus at equilibrium and permeability. In order to
identify these two parameters, the main models used are based on the biphasic and
poroelastic theories. Even though these theories developed from different roots, it can be
shown that they are basically equivalent [12].

In this study, we focused our attention on the evaluation of the permeability in
the meniscus and in particular on its variation in the different regions of the tissue and
directions (See Figure 1b). Moreover, we showed that the biphasic model does not provide
a good fit with the experimental curves; therefore, we proposed a poroelastic model in
which the pore pressure diffusion equation is derived by adopting a modified version of
Darcy’s law involving fractional derivatives [13].

It has been shown that, in a high porosity medium, there is a departure from Darcy’s
law as the inertia (velocity-squared term), thermal dispersion, convective (development
term) and boundary (no-slip condition) effects not included in the Darcy’s model may play a
significant role [14]. Moreover, in the last few decades, experimental evidence of anomalous
diffusive phenomena, i.e., not following a Darcian behaviour, has grown [15–19].

This is mainly due to the fact that the permeability, hence the rate of fluid flow, is not
a constant quantity. Variations in permeability occur, for example, when the fluid flow
impacts the geometry or the micro-structural features, such as the configuration of the
pores. For example, experiments on water flow in building materials highlighted that
the permeability changes during the flowing process as a result of the microstructural
rearrangement of grains/pores.

Iaffaldano et al. [19] hinted that, during the compaction of sand, the permeability
might decrease due to the fact that the fluid carries solid particles, which then close some
of the pores. Essentially, the configuration of the medium, in particular the ratio between
closed/open pores, changes during the process. Fluid might be trapped in the medium
leading to a slower fluid flow rate. On the contrary, if during the fluid diffusion process,
some of the pores open creating conductive microchannels, the permeability might increase.
Therefore, fluid can be transported for a large distance in a reduced time resulting in a
faster diffusion process.

Modelling the anomalous fluid diffusion process is one of the key points when dealing
with the poromechanics of biological tissues. Therefore, it is fundamental to develop
a theory that can incorporate the change in microstructural features (for instance, the
interaction between fluid particles and open pores/channels) during the transport process.
Recently, the stochastic Continuous Time Random Walk (CTRW) framework was proposed
for this purpose [20]. However, a deterministic derivation, dual to the CTRW, can be
represented by the introduction of a modified version of Darcy’s law involving linear
fractional operators [21,22].

The goal of this paper is to present the results of experimental confined compression
tests performed on samples extracted from the three portions of the human knee meniscus
(posterior, central and posterior). During confined compression, fluid flows through the
collagen channels with a rate depending on the permeability of the tissue itself (Figure 1c).

We aim at: (1) extracting the diagonal terms of the permeability tensor; (2) studying,
analysing and modelling the observed decay of fluid flow during the test, which is not
captured by the classical Darcy’s law. Hence, we propose a generalization of this law,
which involves time derivatives of non integer order appropriate to model the fluid flow in
the meniscal tissue; (3) proposing a small deformation fractional poroelastic model for the
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human meniscal tissue during confined compression. The model enables us to identify the
two parameters involved in the fractional pore pressure diffusion equation, namely the
permeability and the order of the (fractional) derivative.

In this study, we do not consider coupling between the flow in different directions,
i.e., assume that the permeability tensor is diagonal. The structure of the paper is as
follows: we introduce the rationale behind a fractional Darcy’s law, we then summarize
the main equations of both biphasic and fractional poroelastic theories; we then present
the confined compression poromechanics experimental tests and discuss the material
parameters (fractional permeability and order of the fractional derivative) we recover
through the fittings.

2. Fluid Flow in Complex Porous Media: Time-Fractional Darcy’s Law

Fluid flow in porous media is commonly modelled by Darcy’s law. This relation was
observed experimentally by Darcy [23] and derived in 1986 from the Navier–Stokes equa-
tions using the homogenisation theory [24]. Darcy’s law states that the instantaneous flow
rate through a homogeneously permeable porous medium of permeability k is proportional
to the dynamic viscosity of the fluid and the pressure drop over a given distance.

The total discharge, J f (units L3/T, where L and T indicate units of length and time,
respectively) equates the product of the intrinsic permeability, k (L2) with the cross-sectional
area flow, A (L2) and the total pressure drop pout − pin (F/L2), all divided by the dynamic
viscosity, µ (FT/L2) and the length over which the pressure drop is taking place `:

J f = −
k · A · (pout − pin)

`µ

More generally, Darcy’s law states that the discharge per unit area, j f = J f /A is pro-
portional to the pressure gradient, and the intrinsic permeability and inversely proportional
to the dynamic viscosity:

j f = −
k
µ
∇p.

The derivation of Darcy’s law from Navier–Stokes equations assumes a creeping, laminar,
stationary and incompressible flow of density ρ and velocity (ui)1≤i≤3. Incompressibility
implies: ( Dρui

Dt = 0), which leads to Stokes’ equation in the presence of gravity gi:

µ∇2ui + ρgi − p,i = 0.

Assuming that the viscous resisting force varies linearly with the velocity, introducing
the porosity φ, and the second order permeability tensor k = kij, a simple derivation leads to:

−(kij)
−1µφuj + ρgi − p,i = 0.

The discharge per unit area in direction n can then be written as follows:

j f n = − kni
µ
(p,i − ρgi).

j f = −
k
µ
(∇p− ρg) .

If the resistance to fluid flow offered by the pores varies in space, the components of
the permeability tensor kij vary in space. kij is a symmetric (Onsager reciprocal relations),
positive definite (because the flow component parallel to the pressure drop occurs in the
same direction as the pressure drop) matrix. kij may be isotropic, in which case, it is
diagonal, and all diagonal entries are identical: kij = kδij. In general, the permeability
tensor is anisotropic, and may also not be diagonal. In all cases, the permeability tensor
can be diagonalised, as it is symmetric positive definite.
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As previously underlined, when dealing with soft tissue and complex porous media,
permeability changes during the deformation process; therefore, it is important to develop
a theory, such as the CTRW, which incorporates the change in microstructural features
during the transport process. A modified version of Darcy’s law involving linear fractional
operators can be seen as the deterministic version of CTRW [21,22]:

j f = −
k
µ

Dβ
0 (∇p) (1)

In the following, k
µ will be indicated as λβ. Dβ

0 indicates Caputo’s fractional derivative of
order β of∇p, which is defined below:

(Dβ
0∇p)(t) =

1
Γ(n− β)

∫ t

a

∇pn(τ)

(t− τ)β+1−n dτ (2)

The expression is valid for n− 1 < β < n, and Γ is the Euler’s Gamma function. In
the cases considered in this paper, the lower bond of integration a = 0. The fractional
derivative method offers the possibility to model, with reduced number of parameters, all
of the anomalous diffusion behaviours by changing the order of the derivative. The main
drawback is that it is difficult to link the order of the derivatives with the microstructural
features. Within this frame, in this paper, we identify a simple mathematical model able to
describe fluid flow in the human meniscus.

3. Biphasic and Linear Fractional Poroelastic Models

The assumptions at the basis of both the poroelasticity and biphasic theories are
the following:

• The solid phase is incompressible, linear elastic, subject to infinitesimal strain, homo-
geneous, isotropic (i.e., the material parameters of the solid phase do not depend on
the orientation nor the position in the sample) and non dissipative.

• The fluid phase is incompressible, it flows slowly through the pores, it is homogeneous,
isotropic and non dissipative, and there is no fluid source.

• The only dissipation comes from the frictional drag due to the relative velocities of
the two phases.

• The absence of external body forces (other than those explicitly mentioned for the
confined compression tests).

• The isotropy and homogeneity of the permeability tensor, which is then reduced to
the scalar k representing the averaged intrinsic permeability of the sample.

• The permeability k is a constant parameter (time-independent) in the biphasic model
and it is a time-dependent quantity in the fractional poroelastic model (due to the
time-fractional Darcy’s law described in Equation (1)).

3.1. Biphasic Model—Consolidation Problem

For the purposes of this study, we restrict our formulation to small strain theory and
consider the linear biphasic model from [25]. We assume the solid matrix is incompressible,
linear elastic, isotropic, homogeneous and non dissipative, whereas the interstitial fluid is
incompressible and non dissipative. The only dissipation comes from the frictional drag
due to the relative velocities of the two phases. We denote by λ0 = k/µ, the averaged axial
permeability of the sample and HA as the aggregate modulus.

Under these assumptions and the additional assumptions coming from the confined
compression tests setting, the biphasic theory leads to the following unidimensional bound-
ary value problem for the vertical displacement us

z of the solid phase

∂2us
z

∂z2 =
1

HAλ0

∂us
z

∂t
in (0, h)× (0, T), (3)
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with the boundary condition at z = 0 where the solid skeleton is fixed

us
z(z = 0, t) = 0 on (0, T), (4)

the initial condition
us

z(z, t = 0) = 0 on (0, h), (5)

and finally the boundary condition at z = h, which will be different for the creep test and
for the stress relaxation test [26]. For the creep test, the condition is

∂us
z

∂z |z=h
= − PA

HA
on (0, T), (6)

where PA is the applied compressive stress, and, for the stress relaxation test, the condition
is

u(z = h, t) =
{
−V0t if 0 6 t < t0,
−V0t0 if t0 6 t 6 T,

(7)

where V0 and t0 are the input data from the stress relaxation test.

If we denote cn = (−1)
n−1

2

(
2h
nπ

)2
, the solution to Equations (3)–(6), in the case of the

creep test, reads

uz(z, t) =
PA
HA

[
−z +

2
h

∞

∑
n=1,3

cn exp
(
−HAλ0n2π2t

4h2

)
sin
(nπz

2h

)]
, (8)

If we denote ρn =
( nπ

h
)2, the solution to Equations (3)–(5) and (7) [26] is given by

us
z(z, t) =


−V0tz

h
− 2V0

HAλ0h

∞

∑
n=1

(−1)n

ρ3/2
n

(
1− exp(−HAρnλ0t)

)
sin(
√

ρnz) if 0 6 t < t0,

−V0t0

h
− 2V0

HAλ0h

∞

∑
n=1

(−1)n

ρ3/2
n

exp(−HAρnλ0t)
(

exp(−HAρnλ0t)− 1
)

sin(
√

ρnz) if t0 6 t 6 T.
(9)

The stress relaxation response σt is given by HA
∂u
∂z |z=h, and thus

σt =


−V0HAt

h
+

2V0

λ0h

∞

∑
n=1

ρ−1
n
(
1− exp(−HAρnλ0t)

)
if 0 6 t < t0,

2V0

λ0h

∞

∑
n=1

ρ−1
n exp(−HAρnλ0t)

(
exp(−HAρnλ0t)− 1

)
if t0 6 t 6 T.

(10)

3.2. Linear Fractional Poroelastic Model: Fractional Consolidation Problem

The classical linear model of transient flow and deformation of a homogeneous fully
saturated elastic porous medium depends on an appropriate coupling of the fluid pressure
and solid stress. A change in applied stress produces a change in the fluid pressure or
fluid mass, and a change in fluid pressure or fluid mass is responsible for a change in the
volume of the porous material. The coupling term affects only the hydrostatic part of the
stress tensor. The stress tensor can be written as follows:

σ = 2Gε + λtrace(ε)I− αpI (11)

where λ = K− 2
3G is the Lamé constant; G, K are the shear and bulk modulus, respectively;

p is the pore pressure; and α is the Biot coefficient. In order to solve this one, we need
an additional equation, which is given by the pore pressure diffusion equation derived
considering a time fractional Darcy’s law in Equation (1) [13]:

∂p
∂t

=
KB
α

λβDβ
0∇

2 p− B
∂σH
∂t

(12)
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where Dβ
0 indicates the Caputo’s time fractional derivative [27]. It is important to note

that the classical (non fractional) pore pressure diffusion equation is recovered in case of

β = 0. In this case λβ = k
µ with dimension of [L]4

[F][T] . In the case of β 6= 0 note that λβ has

dimension of [L]4

[F][T]1−β . The pore pressure diffusion equation can also be written in terms of
strains [13]:

∂p
∂t

=
Ku − K

α2 λβDβ
0∇

2 p− Ku − K
α

∂εd
∂t

(13)

The consolidation problem is modelled through the 1D uniaxial strain poroelastic
problem [13]. Equation (11) is adapted for the 1D case in which the only non-zero compo-
nent of strain is εzz, we obtain: (

K +
4G
3

)
∂εzz

∂z
− α

∂p
∂z

= 0 (14)

Equation (14) is then coupled with the pore pressure diffusion equation in Equation (13)
in order to obtain the following pore pressure diffusion equation:

∂p
∂t

= λ̄Dβ
0

∂2 p
∂z2 (15)

where λ̄ = λβ
(4G+3K)(Ku−K)

α2(4G+3Ku)
. We indicate with the symbol λ0 = (4G+3K)(Ku−K)

α2(4G+3Ku)
.

The boundary value problem is given [13]:

∂p
∂z z=0

= 0, (16)

p(z = h, t) = 0, (17)

u(z = h, t) = 0. (18)

A constant compressive stress in the z-direction is applied to the cylinder at z = 0:

σzz(0, t) = −PA (19)

where −PA is the applied compressive stress. The initial pore pressure is derived for
undrained conditions, i.e.,

p(z, 0) = PA
3(Ku − K)

α(4G + 3Ku)
(20)

The analytical solution in terms of pore pressure reads as follows:

p(z, t) = PAγ
∞

∑
n=1,3

E1−β,1

(
−n2π2λ̄t1−β

4h2

)
cn cos

nπz
2h

(21)

where:

γ =
3(Ku − K)

α(4G + 3Ku)
(22)

cn = (−1)
n−1

2

(
2h
nπ

)2
(23)

where E1−β,1 is the Mittag–Leffler function. In the case of β = 0, the solution is identical to
the classical Terzaghi’s solution in which E1−β,1 = exp.
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In the case of β = 0, it is possible to derive the following displacement analytical
solution [28]:

uz(z, t) =
PA
λ0

[
−z +

2
h

∞

∑
n=1,3

cn exp
(
−λ0κn2π2t

4h2

)
sin
(nπz

2h

)]
, (24)

where cn = (−1)
n−1

2

(
2h
nπ

)2
.

3.3. Correspondence of Parameters between the Biphasic and the Linear Fractional
Poroelastic Model

The biphasic model essentially depends on two parameters: the aggregate modulus
HA and the averaged axial permeability κ. The linear fractional poroelasticity model of Biot
depends instead on three parameters: the diffusion coefficient λβ, the fractional power β
and the ratio k/µ. These parameters depend on the material parameters of the constituent
phases or have to be determined, for example using numerical experiments curves fitting.
The biphasic and linear fractional Biot models are equivalent under the above assumptions
when β = 0 (i.e., in the case of a non-fractional Biot’s model) and when HA = λ0.

The Equations (8) and (24) show that the biphasic and Biot models are equivalent
when HA = λ0. Similarly, the displacement solution from the Biot’s model in the case of
the stress relaxation test can be obtained by replacing HA by λ0 in Equation (9). Hereinafter,
Tables 1 and 2 summarize the relationships between the parameters for each models.

Table 1. Linear fractional Biot model.

Notation Name Expression Unit

K drained bulk modulus Pa

G drained shear modulus Pa

Ku undrained bulk modulus Pa

α Biot’s coefficient Unitless

B Skempton’s coefficient (Ku − K)/(αKu) Unitless

k averaged intrinsic permeability m2

µ fluid viscosity N · s ·m−2

κ averaged axial permeability κ = k/µ m4 ·N−1 · s−1

non-fractional diffusion coef
λ0 - compressible case ((4G + 3K)(Ku − K))/(α2(4G + 3Ku)) m3 · s · kg−1

- incompressible case (4G + 3K)/3

λβ fractional diffusion coef. m3 · s1+β · kg−1

β fractional power Unitless
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Table 2. Biphasic model.

Notation Name Expression Unit

γ ratio solid volume/fluid volume Unitless

Ks solid phase bulk modulus Pa

Gs solid phase shear modulus Pa

k intrinsic permeability m2

µ fluid viscosity N · s ·m−2

κ averaged axial permeability µ/((1 + γ)2k) N · s ·m−4

HA aggregate modulus (4Gs + 3Ks)/3 Pa

4. Materials and Methods
Poromechanics Tests—Confined Compression

Menisci were harvested from patients (age 65–76, mean 72, and standard deviation 4)
undergoing total knee arthroplasty (ethical approval EM 249-2018 21/2017/Sper/IOR EM2,
Rizzoli Orthopaedic Institute, Bologna, Italy). Samples labelled as “degraded” by gross
investigation of the surgeon were discarded. Three lateral menisci and three medial menisci
were collected and stored at −20 ◦C [29,30]. The day of the test, each meniscus was thawed
in a phosphate-buffered saline (PBS) bath at room temperature for about thirty minutes [30].
Then, cylindrical samples (diameter of 3 mm and height of 3–4 mm) were extracted from
the central body, anterior and posterior region along three reference directions, i.e., vertical,
radial and circumferential (Figure 1b), following a dedicated procedure [31], adapted to
the meniscal configuration.

A total of 18 cylindrical samples were grouped considering the the harvesting region
(body, anterior and posterior) and the direction (vertical, radial and circumferential) and
then tested. The testing protocol was implemented on a multi-axis mechanical tester
(Mach-1, Biomomentum Inc., Laval, QC, Canada) in a confined compression configuration
Figure 1c); with this specific setup, we were confident that the fluid could flow only from
the base of the cylinder. Insertion in the confining chamber, thickness measurement, and
removal of the meniscal sample followed a dedicated procedure [31].

Concerning confined compression, the setup involved a confining chamber with an
inner diameter equal to that of the tool used during the extraction of cylindrical samples,
i.e., 3 mm. The bottom of the chamber consisted of a porous-permeable platen, while
the top allowed the insertion of the piston. Both these components (Biomomentum Inc.,
Canada) were manufactured to allow the leakage of the fluid only through the porous
platen.

Moreover, an additional control was provided by visual inspection of the confining
chamber transparent wall, which allowed us to check any fluid flow toward the piston
(Figure 2a). We measured the amount of fluid flowing out each sample as a result of the
applied compression loading by monitoring the weight of the samples throughout the test.
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Figure 2. (a) The confined compression test set up. Cylindrical specimens are extracted from a
human meniscus. (b) The cylinder is then confined inside a glass chamber with a porous base and
compressed by a metal bar. During compression, the water in the meniscal sample flows from the
base of the cylinder. (b) Schematic representation of the boundary conditions used to solve the
boundary value problem.

Testing Protocols

Relaxation tests. For the relaxation tests, we followed the procedure for permeability
and aggregate modulus HA analysis, as recommended by the manufacturer of the testing
machine [31,32]. In further detail, the test sequence considers a pre-compression with ramp
amplitude 10% of the sample thickness (h) and ramp velocity 0.3% h/s, followed by five
stress-relaxations with incremental ramp amplitude 2% h and ramp velocity 0.3% h/ s.

Creep Tests The testing protocol—specifically the loading amplitude and the detection
of the fluid flow out of the sample—was designed and optimized for this specific study.
In particular, three testing phases were implemented for each meniscal sample. The first
phase, developed according to [31], consisted in five separated repetitions of confined
compression, 75 s each, to realize 450 s of total creep. More in detail, before and after each
compression, sample was removed from the confining chamber, weighed by a microbalance
(Tecnopound, Ravenna, Italy) and repositioned inside the chamber with the previous
vertical orientation.

The second phase involved the resting of the sample in PBS until its height returned
to the pre-loading value, to thus recover the loading history. In the final phase, i.e., the
third one, a single step of confined compression creep was applied to the sample for 450 s.
Similarly to what we reported for the phase one, also in this case, the weight of the sample
was measured before and after the compression.

It is crucial to emphasize that this third phase served to calibrate the weights measured
during phase one, when the multiple removals of the sample from the confining chamber
and the separated compressive ramps could have affected the creep. The stage velocity was
0.3% h, while the load target was 0.5 N, corresponding to a stress of about 0.07 MPa, which
is within the range of physiological values for human menisci [33]. The decrease in weight
of the sample was monitored throughout the test, and this was correlated to the amount of
fluid discharged by the samples, hence, it served to reveal information regarding the rate
of the fluid flow.
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In particular, the weight of the sample over time W(t) is related to the initial weight
of the sample W0 and the fluid flux:

W(t) = W0 −
∫ t

0
j f ·ws Adt (25)

with j f given by Equation (1), in which the gradient of the pressure is given by differentiat-
ing the expression of the pressure in Equation (21), ws being the specific weight and A the
cross-sectional area. Substituting Equations (1) and (21) into Equation (25), we obtain the
following relation:

W(t) = W0 − PAγ
2
h

∞

∑
n=1,3

[
λβt1−βE1−β,2−β

(
−π2λ̄t1−β

4h2

)]
(26)

In Equation (26), n = 1 was retained since no improvements were observed by adding
more terms to the series. This means that one term is sufficient to describe the physics
of this kind of test, but, in more realistic conditions, it is expected that more terms of the
summation would be needed to accurately describe the solution.

5. Poromechanics Test Results and Fittings
5.1. Relaxation Tests Results—Biphasic Model

By implementing the standard procedure (i.e., confined compression, stress relaxation,
no weight measurements and classic biphasic theory)—which was designed for carti-
lage, but it is here adopted for meniscal cylinders—the revealed mechanical parameters
presented a large variability (Figure 3). Moreover, the expected trend of decreasing perme-
ability with increasing strain was visible only for one trial (“TK11-CB-Vert” in Figure 3).
This fact, coupled with high values of fitting root mean squared error (RMSE), underlines
the difficulties of this approach in characterizing meniscal tissue.

1 
 

 

Figure 3. Examples of fittings of relaxation test data (only one of the five-step test is reported) with
Equation (10) for a medial human meniscus (TK11)—central body (CB). (a,b,d) samples extracted
in the radial direction and (c) in the vertical direction. Table 3 contains the parameters HA and
permeability k of all the five steps.
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Table 3. Complete set of the five-step test results of the central portion of the medial meniscus shown
in Figure 3 for the three directions (vertical, radial and circumferential). Note that the expected
trend of decreasing permeability with increasing strain was visible only for the vertical direction
(TK11-CB-Vert). The root mean square error (RMSE) values are high in some cases showing that the
model does not always fit the experimental behaviour.

Ramp Amplitude

Sample Step (% Height) HA (MPa) k (m4/s×N) RMSE

1 2 0.180 0.858× 10−12 0.0003
2 4 0.135 2.803× 10−12 0.0002

TK11-CB-Circ 3 6 0.032 0.410× 10−12 0.0011
4 8 0.122 0.953× 10−12 0.0004
5 10 0.058 1.714× 10−12 0.0004

1 2 - - -
2 4 0.044 1.572× 10−12 0.0005

TK11-CB-Rad 3 6 0.007 3.383× 10−12 0.1533
4 8 0.037 0.870× 10−12 0.0003
5 10 0.030 0.525× 10−12 0.0008

1 2 0.0173 1.0190× 10−12 0.0023
2 4 0.0116 0.9400× 10−12 0.0100

TK11-CB-Vert 3 6 0.0126 0.8100× 10−12 0.0120
4 8 0.0230 0.4760× 10−12 0.0025
5 10 0.0173 0.4850× 10−12 0.0080

5.2. Creep Test Results—Fractional Poroelastic Model

Focusing on confined compression tests, we specifically measured the decrease in
weight of the cylinder during the tests and correlate this data to the amount of fluid
discharged by the samples j f during the test. We now illustrate the best-fitting procedure
performed between the proposed model in Equation (26) and the experimental results as
shown in Figure 4a–f for a few samples taken from one of the three lateral menisci.

In particular, three free parameters are considered: β, λ̄, and λβ. We perform the
best-fitting procedure for a time window extended from t 0 to 450 s. γ = 0.695 was fixed
by considering specific mechanical parameters, which are summarized in Table 4.

Table 4. Material parameters.

Bulk modulus K = 1.6 × 105 Pa

shear modulus G = 76,923 Pa (E = 0.2× 106 Pa, ν = 0.3)

Skempton coefficient B = 0.88

Biot coefficient α = 0.65

Undrained bulk modulus Ku = K/1 − α B
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Figure 4. Evolution of the decrease in weight during the confined compression test, which was correlated with the amount
of the fluid discharged upon compression of the tissue. The fittings relation is given in Equation (26). The graphs shown
are related to samples extracted from a lateral meniscus (tk16). (a) Sample from the central body (B) and along the
circumferential direction (C). (b) Sample from the posterior horn (P) and along the radial direction (R). (c) Sample from the
central body (B) and along the vertical direction (V). (d) Sample from the posterior horn (P) and along the vertical direction
(V). (e) Sample from the central body (B) and along the radial direction (R). (f) Sample from the anterior horn (A) and along
the radial direction (R).

The values of the parameters obtained through the fittings are reported in Table 5. For
samples extracted in the anterior/central/posterior and in vertical, radial and circumferen-
tial direction as shown in Figure 5.
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Figure 5. Graphical explanation of the region (central body) /direction (vertical, radial and circum-
ferential) corresponding to the parameters highlighted in Table 5.

Table 5. The results of the fittings. The first column shows the name of the sample, the second
column β shows the order of derivative, the third column λβ is the anomalous permeability, and the
fourth column specifies if the sample is extracted from a medial (M) or lateral (L) meniscus.

Sample β λβ

(
m4

N×s1−β

)
Medial/Lateral

TK11BV 0.0242 4.744× 10−10 M

TK11BR 0.0512 5.04× 10−10 M

TK11BC 0.0220 5.018× 10−10 M

TK16PR 0.0426 4.619× 10−10 L

TK16AR 0.0259 1.695× 10−10 L

TK16AV 0.0178 0.765× 10−10 L

TK16PV 0.0227 0.1083× 10−10 L

TK16BV 0.0397 4.292× 10−10 L

TK16BC 0.0655 10.926× 10−10 L

TK16BR 0.0666 10.822× 10−10 L

TK17AR 0.0259 1.331× 10−10 L

TK17BV 0.0553 2.695× 10−10 L

TK17BC 0.0434 4.318× 10−10 L

TK18BV 0.0322 1.377× 10−10 M

TK18BR 0.0287 1.897× 10−10 M

TK18BC 0.0289 3.823× 10−10 M

TK36BC 0.0519 7.877× 10−10 M

TK37BV 0.0450 7.868× 10−10 L

6. Discussion

In this study, we assumed that the fluid flow is ruled by a modified version of Darcy’s
law (Equation (1)). According to Equation (1), the fluid flow is not steady as modelled by
the classical Darcy’s law. Instead the fluid flow rate evolves with time, more specifically
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it evolves with a fractional time derivative (of order β). Equation (1) also implies that
the permeability is anomalous in the sense that its units are a function of the order of the
derivative λβ = [ L4

FT1−β ].
The classical Darcy’s law was recovered for β = 0 in Equation (1). In order to estimate

how closely both models (classical and fractional Darcy’s law) fit the experimental data we
compared the RMSE values. We observed in 12/18 fitted experimental tests reported in
Table 3 that the RMSE given by the fractional model was lower by 10% with respect to the
classical model.

Although this might seem insufficient to justify a new theory, it is important to note
that this is the first attempt to use this type of model for interpreting the rate of fluid flow
inside a biological tissue. We are confident that a more precise experimental set up will
give more emphasis of the benefit of having a generalized fractional model that allows for
incorporation of the classical one by simply setting β = 0.

Furthermore, it would be interesting to study the evolution of fluid flow inside the
meniscus and how it varies both spatially (within the posterior/central/anterior portions)
of the tissue and directionally (in the vertical/radial/circumferential directions) considering
the parameters in Table 3. A first analysis of the parameters highlights that the values of
the order of the fractional derivative β and the anomalous permeability λβ are higher for
the central body of the meniscus with respect of the anterior and posterior horns.

The mean values of λβ, β in the central body are λβ = 5.5443× 10−10 m4

Ns1−β , β = 0.0434,

while, in the posterior and anterior regions, are λβ = 2.851× 10−10 m4

Ns1−β , β = 0.0326 and

λβ = 1.2636× 10−10 m4

Ns1−β , β = 0.0232, respectively.
Although the values of β in the three regions might not significantly diverge from

zero, they indeed affect the evolution of the fluid flow rate.
In order to investigate the role of the order of the fractional time derivative β, we

specifically realized a computational simulation in which we applied a constant gradient
of pressure ‖∇p‖, and we calculated the fluid flow rate by applying the fractional Darcy’s
law relation as given in Equation (1).

Figure 6a shows the normalized flow rate (j̄ f ) calculated considering Equation (1) in

the case of a constant value of gradient of pressure ‖∇p‖ = 3× 108 Pa
m , λβ = 5.5443×

10−10 m4

N×1−β and the three values of β = 0.0434, 0.0326, 0.0232 obtained for the central
body, posterior and anterior horns, respectively. Even a small value of the time fractional
derivative β affects the fluid flow response. β = 0 is equivalent to considering the classical
Darcy law, i.e., the fluid flow rate is constant in time.

From Figure 6a, it is possible to observe that the higher the value of β, the faster the
decrease in the fluid flow rate is. Furthermore, we analysed the evolution of the fluid
flow rate in the central body, posterior and anterior horns using the mean values of the
parameters β, λβ above. Figure 6b shows the response of the normalized flux in the three
regions.

As the value of the anomalous permeability λβ in the central body is about four-times
higher than in the anterior horn, the value of flux is higher in the central body and lowest
in the anterior region. Moreover, as the value of β is larger compared to the anterior and
posterior horns, the fluid flux is faster (i.e., decrease in the fluid flow rate) in the central
body.
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Figure 6. (a) Normalized fluid flow rate (j̄ f ) calculated considering Equation (1) in the case of

a constant value of gradient of pressure ∇p = 3 × 108 Pa/m, λβ = 5.5443 × 10−10 m4

Ns1−β and
three values of β = 0.0434, 0.0326, 0.0232 obtained for the central body, anterior and posterior
horns. (b) Normalized fluid flow rate (j̄ f ) for the three regions (central body, anterior and pos-
terior horns) calculated considering Equation (1) in the case of a constant value of gradient of
pressure∇p = 3× 108 Pa/m and with λβ = 5.5443× 10−10 m4

Ns1−β , β = 0.0434 in the central body,

λβ = 2.851× 10−10 m4

Ns1−β , β = 0.0326 in the posterior horn and λβ = 1.2636× 10−10 m4

Ns1−β , β = 0.0232
in the anterior horn. (c) Evolution of the normalized fluid flow rate in circumferential, radial and ver-
tical directions of the central body portion of the meniscus with β = 0.0421, λβ = 6.3924× 10−10 m4

Ns1−β

for the circumferential direction, β = 0.0488, λβ = 5.9196× 10−10 m4

Ns1−β for the radial direction and

β = 0.0393, λβ = 4.321× 10−10 m4

Ns1−β for the vertical direction.

We also consider how the fluid flow rate evolves in different directions, i.e., radial,
vertical or circumferential. In this regard, given the paucity of data related to anterior and
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posterior horns, it is only possible to analyse the central body of the meniscus. The mean
values of β, λβ in the circumferential, radial and vertical directions are β = 0.0421, λβ =

6.3924 × 10−10 m4

Ns(1−β) , β = 0.0488, λβ = 5.9196 × 10−10 m4

Ns(1−β) and β = 0.0393, λβ =

4.321× 10−10 m4

Ns(1−β) , respectively. Figure 6c pictures the evolution of the normalized fluid
flow rate in the three directions. The values of β are very close for all the three directions,
differing within a few percentage points. Therefore, the decrease of flux in time (i.e., the
flux velocity) can be considered as almost identical in the three main directions.

The value of β rules the time evolution of the pore pressure diffusion in Equation (21).
Increasing the value of β implies a faster pore pressure diffusion with time. At the beginning
of the test, when the fluid saturates the pores, the pore pressure carries most of the load.
As the test continues, the fluid flows out of the specimen. The pore pressure decreases, and
hence the solid structure starts deforming.

The rate at which the fluid flows and the pore pressure decrease and the solid structure
deformation increases is ruled by the value of the fractional derivative β. A higher value of
β implies a faster pore pressure diffusion and, hence, a faster solid deformation. Figure 7
shows the evolution of the adimensional pore pressure (p̄ = p(z, t)/PA in Equation (21))
throughout the length of the sample along the z axis for different values of β = 0, 0.1, 0.5 at
time 15 s. It can be seen that the pore pressure drops at a faster rate with increasing β.

Figure 7. Evolution of the adimensional pore pressure (p̄ = p(z, t)/PA in Equation (21)) throughout
the length of the sample in the z axis for different values of β = 0, 0.1, 0.5 at a time of 15 s.

7. Conclusions

This work focuses on the understanding of the evolution of the fluid flow inside human
meniscal tissue. We showed through µCT scans of the meniscus that the porosity signifi-
cantly varies spatially within small portions of the tissue. This leads to a functionally graded
permeability across the meniscal tissue. We wanted to address a question regarding how to
appropriately model the fluid flow inside the meniscus. We specifically performed confined
compression tests on samples extracted from three portions (posterior/central/anterior) of
the structure and in three directions (vertical/radial/circumferential) in order to experi-
mentally measure the anisotropic permeability of the human meniscal tissue.

We then correlated the weight loss of the sample with the evolution of the fluid
discharged upon compression of the tissue. The results show that the weight loss of the
sample is well described by a three-parameter equation derived from a fully coupled
poroelastic model in which the fluid flux evolution is ruled by a generalized Darcy’s law
involving fractional operators, such as derivatives of non-integer order.

We obtained the anisotropic parameters needed to characterize the fluid flow evolution
inside the different parts of the meniscus, i.e., the “anomalous” permeability as well as the
order of the derivative. We noticed that the parameters of this porous medium equation
are functionally graded in space. Our results preliminarily suggest that the fluid flow in
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the central part is faster than in the posterior and anterior regions. Moreover, we noted
that the flux is higher in the circumferential direction of the central body compared to the
radial and vertical directions. However, the decrease in flux over time (i.e., flux velocity)
can be considered almost identical in the three directions.

We believe that this work is a first attempt and a pioneering study, which experi-
mentally investigated the anomalous behaviour of the meniscal tissue. Furthermore, the
presented approach can be easily adapted to study other types of biological tissues. On the
other hand, there are several limitations of this study, as here summarized:

• Additional experimental tests (unconfined compression and confined compression
with control of the pressure) need to be performed in order to fully characterize the
single poromechanics parameters appearing in λβ and λ̄.

• A wider sample size and additional information is required to perform a reliable
statistical analysis (thus far, we tested one cylinder per portion of meniscus in the
vertical, radial and circumferential directions).

• This work focuses on 1D poromechanics behaviour in the three directions; however, in
order to build the full anomalous permeability tensor, the coupled behaviour should
be assessed in depth. Nevertheless, this study requires a more complex experimental
set up.
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