569 research outputs found

    Flight-Test Evaluation of Landing Gear Noise Reduction Technologies

    Get PDF
    Results from the third Acoustics Research Measurements flight test, conducted under the NASA Flight Demonstrations and Capabilities project, are presented and discussed. The test evaluated landing gear and gear cavity noise mitigation technologies installed on a NASA Gulfstream G-III. Aircraft configurations with and without main landing gear treatments were flown at several flap deflections to determine the acoustic performance of the technologies for aircraft equipped with conventional Fowler flaps. With the aircraft flying an approach path and engines at ground-idle, extensive acoustic measurements were acquired with a phased microphone array system. Computed beamform maps were used to examine the effectiveness of the tested technologies in reducing the strength of the noise sources generated by the main landing gear. Various integration regions were devised to extract the farfield noise spectra associated with the treated and untreated landing gear configurations. Analyses of the gathered acoustic data demonstrate that significant noise reduction was achieved. How- ever, the full noise reduction potential of the technologies could not be determined because of contamination from flap inboard edge noise and other secondary sources

    Measured and Simulated Acoustic Signature of a Full-Scale Aircraft with Airframe Noise Reduction Technology Installed

    Get PDF
    Microphone phased-array and pole-mounted microphone data gathered during the NASA Acoustics Research Measurements flight tests were used to benchmark results from companion full-scale aeroacoustics simulations. Conducted with the lattice Boltzmann solver PowerFLOW, the simulations predicted the acoustic behavior of various tested aircraft configurations. Emphasis was placed on those flown during the third flight test - a Fowler flap-equipped Gulfstream G-III with and without noise abatement technology on the main landing gear. Direct comparisons between experimental and synthetic microphone phasedarray data were achieved by applying the same processing and deconvolution technique to both sets of data. To extend the validation of the computations to the metric used for noise certification, the Effective Perceived Noise Level, a high-fidelity digital model of the nose landing gear, which was excluded from earlier computations, was developed and integrated into the G-III aircraft geometry. The acoustic study presented here demonstrates that the simulated beamform maps and corresponding integrated farfield spectra accurately predict the locations and strengths of the prominent airframe noise sources present on the G-III aircraft

    The Impact of Local Meteorological Conditions on Airframe Noise Flight Test Data

    Get PDF
    Phased microphone array measurements obtained during flight tests conducted in 2016 and 2017 are used to assess the importance of local meteorological measurements on the data. In particular, the effectiveness of atmospheric absorption corrections is evaluated under vastly different temperature and humidity conditions. The results indicate that, even under conditions with high absorption, sources can be visualized up to a frequency that is dependent on background noise levels, wind, and atmospheric turbulence. However, absolute levels were found to be problematic on days with high absorption rates, with the discrepancies most prevalent for aircraft positions further from the center of the array. Restricting the data to those days with favorable meteorological conditions generally resulted in a good collapse of the spectra, with differences less than a couple of decibels

    Challenging The Accuracy of a Single-test Lactate Threshold Protocol in Collegiate Rowers

    Get PDF
    Elite rowers use lactate threshold (LT) estimates as a basis for training intensity in order to achieve the greatest training volume. For convenience, LT is usually determined in a maximal LT/VO2max test. This simultaneous test is problematic because it requires a large power increment, which may not give the most accurate LT. PURPOSE: To challenge the validity of a simultaneous LT/VO2max test to estimate LT in rowers. METHODS: Collegiate rowers (n=20, 16F and 4M, age 19.3±1.3 years, height 171.5±7.1 cm, weight 70±14 kg, VO2max 44.6±5.5 ml•kg-1•min-1) performed two LT tests. Participants completed an incremental VO2max test with 3-minute intervals increasing by 30W and 40W for women and men respectively. The second test consisted of five 6-minute stages of 10W increments starting from 20W below the estimated LT. For both tests, blood lactate was measured at the end of each stage and LT was determined by the lactate deflection point. The difference in intensity between the first deflection point and the LT was then calculated. RESULTS: Average difference between LT1 and LT2 was 1.15 ± 13.4W, and were not statistically different (p=0.204). Average absolute difference was 9.95 ± 8.80W, and was different from the average (p=0.022). CONCLUSION: A second incremental test should be performed for the most precise determination of LT. This is particularly important to rowers who rely on LT to determine training intensities

    A Parametric Study on the Application of Finlets for Trailing Edge Noise Reduction of a Flat Plate

    Get PDF

    Application of Finlets for Trailing Edge Noise Reduction of a NACA 0012 Airfoil

    Get PDF

    Comparative Study of Active Flow Control Strategies for Lift Enhancement of a Simplified High-Lift Configuration

    Get PDF
    Numerical simulations have been performed for a simplified high-lift (SHL) version of the Common Research Model (CRM) configuration, where the Fowler flaps of the conventional high-lift (CRM-HL) configuration are replaced by a set of simple hinged flaps. These hinged flaps are equipped with integrated modular active flow control (AFC) cartridges on the suction surface, and the resulting geometry is known as the CRM-SHL-AFC configuration. The main objective is to make use of AFC devices on the CRM-SHL-AFC configuration to recover the aerodynamic performance (lift) of the CRM-HL configuration. In the current paper, a Lattice Boltzmann method-based computational fluid dynamics (CFD) code, known as PowerFLOWQ is used to simulate the entire flow field associated with the CRM-SHL-AFC configuration equipped with several different types of AFC devices. The transonic version of the PowerFLOWQ code that has been validated for high speed flows is used to accurately simulate the flow field generated by the high-momentum actuators required to mitigate reversed flow regions on the suction surfaces of the main wing and the flap. The numerical solutions predict the expected trends in aerodynamic forces as the actuation levels are increased. More efficient AFC systems and actuator arrangements emerged based on the parametric studies performed prior to a Fall 2018 wind tunnel test. Preliminary comparisons of the numerical solutions for lift and surface pressures are presented here with the experimental data, demonstrating the usefulness of CFD for predicting the flow field and lift characteristics of AFC-enabled high-lift configurations
    corecore