3,583 research outputs found

    Sub-10 nm colloidal lithography for integrated spin-photo-electronic devices

    Full text link
    Colloidal lithography [1] is how patterns are reproduced in a variety of natural systems and is used more and more as an efficient fabrication tool in bio-, opto-, and nano-technology. Nanoparticles in the colloid are made to form a mask on a given material surface, which can then be transferred via etching into nano-structures of various sizes, shapes, and patterns [2,3]. Such nanostructures can be used in biology for detecting proteins [4] and DNA [5,6], for producing artificial crystals in photonics [7,8] and GHz oscillators in spin-electronics [9-14]. Scaling of colloidal patterning down to 10-nm and below, dimensions comparable or smaller than the main relaxation lengths in the relevant materials, including metals, is expected to enable a variety of new ballistic transport and photonic devices, such as spin-flip THz lasers [15]. In this work we extend the practice of colloidal lithography to producing large-area, near-ballistic-injection, sub-10 nm point-contact arrays and demonstrate their integration in to spin-photo-electronic devices.Comment: 15 pages, 5 figure

    Creep-Fatigue Crack Growth in Power Plant Components

    Get PDF
    In components operating at high temperature, the presence of defect, that may derive from manufacturing process or operating under critical conditions, could raise to creep-fatigue crack growth even at low loading conditions. Creep- fatigue experimental tests have been performed on P91 material, at 600 °C according to ASTM E2760-10 standard, with focus on the effects of the initial nominal stress intensity factor range, ranging between 16 and 22 MPa m 0.5, and the hold time, ranging between 0.1 and 10 hours. The results will be presented in the paper, together with their application for residual life prediction of a power plant cracked pipe, as case study

    High temperature initiation and propagation of cracks in 12%Cr-steel turbine disks

    Get PDF
    This work aims to study the crack propagation in 12%Cr steel for turbine disks. Creep Crack Growth (CCG) tests on CT specimens have been performed to define the proper fracture mechanics which describes the initiation of the crack propagation and the crack growth behaviour for the material at high temperature. Results have been used to study the occurrence of crack initiation on a turbine disk at the extreme working temperature and stress level experienced during service, and validate the use of C* integral in correlating creep growth rate on the disk component, in case C* is numerically calculated through FEM analysis or calculated by the use of reference stress concept

    Experimental and simulated displacement in cracked specimen of P91 steel under creep conditions

    Get PDF
    AbstractThe assessment of crack initiation and propagation under creep conditions is important in the remaining life prediction of pipe components for power generation industry. One of the most successful analytical parameters for describing crack propagation under steady-state creep conditions is the C*-Integral that depends strongly on the material’s creep behavior and the resulting load-line displacement. This study deals with the determination and optimization of a creep model for a P91 grade steel operating at 600 °C. After a good fit provided by the model with uniaxial creep tests was found, the creep behavior of compact type C(T) specimens was modeled to predict creep crack growth (CCG) rates. A modified Cocks and Ashby power law creep controlled cavity growth model was used to compute the creep crack propagation rates. Load-line deflection was found to be strongly dependent on the primary creep strain rate. Lastly, good correlation between the experimental CCG results and the predicted CCG rates from the simulations were found

    Crack Growth Studies in Railway Axles under Corrosion Fatigue: Full-scale Experiments and Model Validation

    Get PDF
    Abstract Crack initiation and growth in full scale railway axle in A1T mild steel have been studied, under three points rotating bending loading conditions and artificial rainwater as corrosive environment. A surface plastic replication technique has been used along with optical microscopy and Scanning Electron Microscopy to monitor the environment assisted fatigue at various stages.A modified Murtaza and Akid empirical model has been employed to predict the corrosion fatigue crack growth rates and a reasonable agreement has been found between experimental and calculated lifetime

    Fly fishing no-kill zones: a possible way to conjugate conservation issues, sustainable sport enhancement and local development in Alpine areas?

    Get PDF
    The promotion of sustainable tourism and outdoor sports can represent an important way to couple environmental conservation strategies and economic enhancement in marginal and Alpine areas. In this context catch and release fly fishing zones can represent an interesting tool, although no data is available on the effectiveness of these practices on Alpine salmonid population dynamics. Salmonids are the main group of fish in alpine rivers and they are the only actively targeted by anglers. Aim of this work is filling this gap, with a pilot study on two no-kill zones (Po and Pellice rivers, NW Italy). We conducted a temporal and spatial comparison between free-fishing and catch and release management river sections, with a detailed analysis on the Po River site. Our results support the hypothesis that catch and release management allows a numerical increase in wild trout populations. In particular, we detected a massive and rapid increase in younger individuals, possibly linked to a stop on the removal of large-sized reproducers. Protecting trout by the implementation of this practice can at the same time allow the increase of sustainable economic development and sport in marginal areas

    Cooking influence on physico-chemical fruit characteristics of eggplant (Solanum melongena L.)

    Get PDF
    Physico-chemical traits of three eggplant genotypes ("Tunisina", "Buia" and "L 305") were evaluated before and after two cooking treatments (grilling and boiling). Different genotypes revealed different changes after cooking, with "Tunisina" showing a better retention of phytochemicals with respect to other two genotypes. The main physical phenomena were water loss during grilling, and dry matter loss after boiling. Chlorogenic acid, the main phenolic in eggplant, resulted higher in grilled samples, while delphinidin glycosides resulted more retained in boiled samples. Glycoalkaloids, thiols and biogenic amines were generally stable, while 5-hydroxy-methyl-furfural was found only in grilled samples. Interestingly, Folin-Ciocalteu index and free radical scavenging capacity, measured with three different assays, were generally increased after cooking, with a greater formation of antioxidant substances in grilled samples. NMR relaxation experiments clarified the hypothesis about the changes of eggplant compounds in terms of decomposition of larger molecules and production of small ones after cooking

    Ecological notes on an endemic freshwater lamprey, Lampetra zanandreai (Vladykov, 1955)

    Get PDF
    Lampetra zanandreai (Vladykov, 1955) is a non-parasitic, freshwater lamprey endemic to the ancient Po basin. A few, mostly very dated studies have investigated some aspect of the biology of this lamprey, but surprisingly, despite it being considered a threatened species, information on its ecology is practically absent. Specifically, information about habitat preferences is generic and qualitative. Since most of the life cycle is spent in the fossorial larval stage, which is also the only one in which organisms feed, information about ecological requirements of ammocoetes is essential for any conservation strategy. In this study we provide the first data about physical habitat preferences for lamprey ammocoetes by analyzing their presence within sampled hydromorphological units (HMUs), following the approach of habitat attribute description of the MesoHABSIM (MesoHABitat SImulation Model) methodology. To explore the relationship between lamprey presence and HMU characteristics, a random forest (RF) model was developed and tested using data collected in five stream reaches of the Po basin (NW Italy). The final parsimonious RF model performed well in terms of accuracy (95.2%) and true skill statistic (90.4%), allowing us to identify the most significant mesohabitat attributes for the considered species. Furthermore, in the Ghiandone River, where the highest density and number of individuals were found, a granulometric analysis of the riverbed material was carried out. Results showed that selected strains of sand and fine gravel, with low organic content, are preferred by ammocoetes. To our knowledge, this is the first study exploring the habitat preference of this endangered species, listed in Annex II of the European Habitats Directive

    Application of martensitic SMA alloys as passive dampers of GFRP laminated composites

    Get PDF
    This paper describes the application of SMA (Shape Memory Alloy) materials to enhance the passive damping of GFRP (Glass Fiber Reinforced Plastic) laminated composite. The SMA has been embedded as reinforcement in the GFRP laminated composite and a SMA/GFRP hybrid composite has been obtained. Two SMA alloys have been studied as reinforcement and characterized by thermo-mechanical tests. The architecture of the hybrid composite has been numerically optimized in order to enhance the structural damping of the host GFRP laminated, without significant changes of the specific weight and of the flexural stiffness. The design and the resultant high damping material are interesting and will be useful in general for applications related to passive damping. The application to a new designed lateral horn of railway collector of the Italian high speed trains is discussed
    • …
    corecore