68 research outputs found

    High-Capacity Conductive Nanocellulose Paper Sheets for Electrochemically Controlled Extraction of DNA Oligomers

    Get PDF
    Highly porous polypyrrole (PPy)-nanocellulose paper sheets have been evaluated as inexpensive and disposable electrochemically controlled three-dimensional solid phase extraction materials. The composites, which had a total anion exchange capacity of about 1.1 mol kg−1, were used for extraction and subsequent release of negatively charged fluorophore tagged DNA oligomers via galvanostatic oxidation and reduction of a 30–50 nm conformal PPy layer on the cellulose substrate. The ion exchange capacity, which was, at least, two orders of magnitude higher than those previously reached in electrochemically controlled extraction, originated from the high surface area (i.e. 80 m2 g−1) of the porous composites and the thin PPy layer which ensured excellent access to the ion exchange material. This enabled the extractions to be carried out faster and with better control of the PPy charge than with previously employed approaches. Experiments in equimolar mixtures of (dT)6, (dT)20, and (dT)40 DNA oligomers showed that all oligomers could be extracted, and that the smallest oligomer was preferentially released with an efficiency of up to 40% during the reduction of the PPy layer. These results indicate that the present material is very promising for the development of inexpensive and efficient electrochemically controlled ion-exchange membranes for batch-wise extraction of biomolecules

    Electrogravimetric detection of DNA hybridization on polypyrrole copolymer

    No full text
    The immobilization of an oligonucleotide via a copolymerisation with a pyrrole monomer onto a Pt surface has been realized on a quartz crystal microbalance (QCM). The efficiency of this biosensor has been evaluated through the hybridization with different targets. Hybridization and adsorption responses were monitored in-situ by QCM frequency change

    Polypyrrole-Peptide Microarray for Biomolecular Interaction Analysis by SPR Imaging.

    Get PDF
    International audienceNowadays, high-throughput analysis of biological events is a great challenge which could take benefit of the recent development of microarray devices. The great potential of such technology is related to the availability of a chip bearing a large set of probes, stable and easy to obtain, and suitable for ligand-binding detection. Here, we describe a new method based on polypyrrole chemistry, allowing the covalent immobilization of peptides in a microarray format and on a gold surface compatible with the use of surface plasmon resonance. This technique is then illustrated by the detection and characterization of antibodies induced by hepatitis C virus and present in patients' serums
    • …
    corecore