197 research outputs found

    Inter- and intra-beach thermal variation for Green Turtle nests on Ascension Island, South Atlantic

    Full text link
    Nest temperatures for green turtles (Chelonia mydas) nesting on Ascension Island, South Atlantic (7°57\u27S 14°22\u27W), were examined. Temperature probes were placed into nests on two beaches, Long Beach (26 nests) and North East Bay (8 nests). Within these beaches there was relatively little thermal variation (SD of nest temperature was 0.32°C for Long Beach and 0.30°C for North East Bay). To examine inter-beach thermal variation temperature probes were buried at 55 cm on 12 beaches. Inter-beach thermal variation was large and was related to the beach albedo with the darkest beach (albedo, 016) being 4.2°C warmer than the lightest coloured beach (albedo, 0.73)

    Inter- and intra-beach thermal variation for Green Turtle nests on Ascension Island, South Atlantic

    Full text link
    Nest temperatures for green turtles (Chelonia mydas) nesting on Ascension Island, South Atlantic (7°57\u27S 14°22\u27W), were examined. Temperature probes were placed into nests on two beaches, Long Beach (26 nests) and North East Bay (8 nests). Within these beaches there was relatively little thermal variation (SD of nest temperature was 0.32°C for Long Beach and 0.30°C for North East Bay). To examine inter-beach thermal variation temperature probes were buried at 55 cm on 12 beaches. Inter-beach thermal variation was large and was related to the beach albedo with the darkest beach (albedo, 016) being 4.2°C warmer than the lightest coloured beach (albedo, 0.73)

    The environmental contaminant DDE fails to influence the outcome of sexual differentiation in the marine turtle Chelonia mydas.

    Get PDF
    In many turtles, the temperature experienced during the middle of egg incubation determines the sex of the offspring. The implication of steroid sex hormones as the proximate trigger for sex determination opens the possibility that endocrine-disrupting contaminants may also influence the outcome of sexual differentiation. In this study we investigate the potential effects of DDE (a common DDT metabolite) on sexual differentiation of Chelonia mydas (green sea turtle). Four clutches of eggs collected from Heron Island, Queensland, Australia, were treated with DDE at the beginning of the thermosensitive period for sexual determination. An incubation temperature of 28 degrees C or less produces male hatchlings in this species, whereas 30 degrees C or more produces female hatchlings. Dosed eggs were consequently incubated at two temperatures (27.6 degrees C and 30.4 degrees C) on the upper and lower boundaries of the sex determination threshold for this species. DDE, ranging from 3.3 to 66.5 microg, was dissolved in 5, 10, and 25 microl ethanol and applied to eggshells above the embryo. Less than 2.5 ng/g DDE was present in eggs prior to dosing. Approximately 34% of the applied DDE was absorbed in the eggs, but only approximately 8% of applied DDE was found in embryos. Thus, treated eggs, corrected for background DDE, had up to 543 ng/g DDE. The sex ratio at these doses did not differ from what would be expected on consideration of temperature alone. Incubation time, hatching success, incidence of body deformities, hatching size, and weight were also within the limits of healthy developed hatchlings. This indicates that the eggs of C. mydas in the wild with concentrations of DDE less than 543 ng/g should produce hatchlings with relatively high hatching success, survival rate, and normally differentiated gonads

    Review and suggestions for upgrading StrandNet as a key element of the Reef 2050 Integrated Monitoring and Reporting Program: final report of the StrandNet team in the megafauna expert group

    Get PDF
    The objective of this report is to provide an overview of the present StrandNet program and suggest how it might be improved to enable the StrandNet database to function as a central component of the megafauna component of the Reef 2050 Integrated Monitoring and Reporting Program (RIMReP). The report results from a cross-sectoral, expert workshop held in Brisbane on 11 June 2018 and attended by personnel from the Great Barrier Reef Marine Park Authority, Queensland government departments of Environment and Science and Agriculture and Fisheries, James Cook University and the University of Queensland, plus subsequent input from some of the workshop attendees

    Satellite tagging and flipper tag recoveries reveal migration patterns and foraging distribution of loggerhead sea turtles (Caretta caretta) from eastern Australia

    Get PDF
    Marine turtles encounter different threats during various life-history stages. Therefore, understanding their movements and spatial distribution is crucial for effectively managing these long-lived migratory organisms. This study combines satellite telemetry data with long-term capture-mark-recapture data derived from flipper tag studies to determine distribution patterns of endangered loggerhead turtles (Caretta caretta) during post-nesting migrations from different eastern Australian nesting sites. Individuals from the Kā€™gari-Fraser Island and Great Barrier Reef island rookeries typically migrated northward, whereas individuals from mainland rookeries migrated equally northward and southward. Despite this difference in foraging distribution, loggerheads from the different rookeries did not differ substantially in their migration duration or distance travelled. The foraging distribution identified from successful satellite tag deployments represented 50% of the foraging distribution identified from a large long-term flipper tag recovery database. However, these satellite telemetry results have identified new migration and foraging habitats not previously recognised for loggerhead turtles nesting in eastern Australia. Additionally, they support the conclusion from a past study using flipper tag recovery data that the mainland nesting turtles migrate to different foraging grounds than the turtles nesting on Great Barrier Reef islands. Collectively, the two data sources provide valuable data on the migration route, habitat distribution and ecological range for a threatened genetic stock of loggerhead turtles

    Effect of water depth and water velocity upon the surfacing frequency of the bimodally respiring freshwater turtle, Rheodytes leukops

    Get PDF
    This study examines the effect of increasing water depth and water velocity upon the surfacing behaviour of the bimodally respiring turtle, Rheodytes leukops. Surfacing frequency was recorded for R. leukops at varying water depths (50, 100, 150 cm) and water velocities (5, 15, 30 cm s(-1)) during independent trials to provide an indirect cost-benefit analysis of aquatic versus pulmonary respiration. With increasing water velocity, R. leukops decreased its surfacing frequency twentyfold, thus suggesting a heightened reliance upon aquatic gas exchange. An elevated reliance upon aquatic respiration, which presumably translates into a decreased air-breathing frequency, may be metabolically more efficient for R. leukops compared to the expenditure (i.e. time and energy) associated with air-breathing within fast-flowing riffle zones. Additionally, R. leukops at higher water velocities preferentially selected low-velocity microhabitats, presumably to avoid the metabolic expenditure associated with high water flow. Alternatively, increasing water depth had no effect upon the surfacing frequency of R. leukops, suggesting little to no change in the respiratory partitioning of the species across treatment settings. Routinely long dives (>90 min) recorded for R. leukops indicate a high reliance upon aquatic O-2 uptake regardless of water depth. Moreover, metabolic and temporal costs attributed to pulmonary gas exchange within a pool-like environment were likely minimal for R. leukops, irrespective of water depth

    Body Temperatures and Winter Feeding in Immature Green Turtles, Chelonia mydas, in Moreton Bay, Southeast Queensland

    Get PDF
    Body temperatures of immature Clenonia mydas does not deviate significantly from water temperature in the range of 15-22.7 degrees C. Additionally, there was no correlation between Tb and body mass, indicating that larger turtles in the sampled range of sizes (9.2 - 39.5 kg) were not gaining a thermal advantage over smaller individuals

    Investigating differences in population recovery rates of two sympatrically nesting sea turtle species

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordData Availability Statement: Data are available from corresponding author upon reasonable request.Estimating lifeā€history traits and understanding their variation underpins the management of longā€lived, migratory animals, while knowledge of recovery dynamics can inform the management of conservationā€dependent species. Using a combination of nest counts and individualā€based lifeā€history data collected since 1993, we explore the drivers underlying contrasting population recovery rates of sympatrically nesting loggerhead (Caretta caretta) and green (Chelonia mydas) turtles in North Cyprus. We found that nest counts of loggerhead and green turtles from 28 beaches across the island increased by 46% and 162%, respectively over the past 27 years. A Bayesian stateā€space model revealed that, at our individualā€based monitoring site, nesting of green turtles increased annually at four times the rate of that of loggerhead turtles. Furthermore, we found that loggerhead turtles nesting at the individualā€based monitoring site had stable reproductive parameters and average adult survival for the species and are the smallest breeding adults globally. Based on results from multiple matrix model scenarios, we propose that higher mortality rates of individuals in all age classes (likely driven by differences in life history and interaction with fisheries), rather than low reproductive output, are impeding the recovery of this species. While the increase in green turtles is encouraging, the Mediterranean population is estimated to have around 3,400 adults and is restricted to the Eastern Basin. The recovery of loggerhead turtles is likely to be compromised until mortality rates in the region are adequately quantified and mitigated. As survival of immature individuals is a powerful driver for sea turtle population numbers, additional efforts should target management at pelagic and neritic foraging areas. Understanding threats faced by immature life stages is crucial to accurately parameterise population models and to target conservation actions for longā€lived marine vertebrates
    • ā€¦
    corecore