23 research outputs found

    Desynchronizing effect of high-frequency stimulation in a generic cortical network model

    Full text link
    Transcranial Electrical Stimulation (TCES) and Deep Brain Stimulation (DBS) are two different applications of electrical current to the brain used in different areas of medicine. Both have a similar frequency dependence of their efficiency, with the most pronounced effects around 100Hz. We apply superthreshold electrical stimulation, specifically depolarizing DC current, interrupted at different frequencies, to a simple model of a population of cortical neurons which uses phenomenological descriptions of neurons by Izhikevich and synaptic connections on a similar level of sophistication. With this model, we are able to reproduce the optimal desynchronization around 100Hz, as well as to predict the full frequency dependence of the efficiency of desynchronization, and thereby to give a possible explanation for the action mechanism of TCES.Comment: 9 pages, figs included. Accepted for publication in Cognitive Neurodynamic

    Random walk on disordered networks

    Full text link
    Random walks are studied on disordered cellular networks in 2-and 3-dimensional spaces with arbitrary curvature. The coefficients of the evolution equation are calculated in term of the structural properties of the cellular system. The effects of disorder and space-curvature on the diffusion phenomena are investigated. In disordered systems the mean square displacement displays an enhancement at short time and a lowering at long ones, with respect to the ordered case. The asymptotic expression for the diffusion equation on hyperbolic cellular systems relates random walk on curved lattices to hyperbolic Brownian motion.Comment: 10 Pages, 3 Postscript figure

    Nonlinear Diffusion Through Large Complex Networks Containing Regular Subgraphs

    Full text link
    Transport through generalized trees is considered. Trees contain the simple nodes and supernodes, either well-structured regular subgraphs or those with many triangles. We observe a superdiffusion for the highly connected nodes while it is Brownian for the rest of the nodes. Transport within a supernode is affected by the finite size effects vanishing as N.N\to\infty. For the even dimensions of space, d=2,4,6,...d=2,4,6,..., the finite size effects break down the perturbation theory at small scales and can be regularized by using the heat-kernel expansion.Comment: 21 pages, 2 figures include

    Fe and N self-diffusion in amorphous FeN: A SIMS and neutron reflectivity study

    Full text link
    Simultaneous measurement of self-diffusion of iron and nitrogen in amorphous iron nitride (Fe86N14) using secondary ion mass spectroscopy (SIMS) technique has been done. In addition neutron reflectivity (NR) technique was employed to study the Fe diffusion in the same compound. The broadening of a tracer layer of 57Fe8615N14 sandwiched between Fe86N14 layers was observed after isothermal vacuum annealing of the films at different temperatures in SIMS measurements. And a decay of the Bragg peak intensity after isothermal annealing was observed in [Fe86N14/57Fe86N14]10 multilayers in NR. Strong structural relaxation of diffusion coefficient was observed below the crystallization temperature of the amorphous phase in both measurements. It was observed from the SIMS measurements that Fe diffusion was about 2 orders of magnitude smaller compared to nitrogen at a given temperature. The NR measurements reveal that the mechanism of Fe self-diffusion is very similar to that in metal-metal type metallic glasses. The structural relaxation time for Fe and N diffusion was found comparable indicating that the obtained relaxation time essentially pertain to the structural relaxation of the amorphous phase.Comment: 10 pages 12 figure

    Reactive phase formation in the diffusion zone between Si3N4 and Ni-Cr alloys

    No full text
    The interaction between dense Si3N4 and Ni-Cr-alloys at 1398K was investigated. Reactive phase formation can be explained by assuming a N2-pressure at the interface. To understand the thermodn. and diffusion kinetics in this system direct nitriding of Ni,Cr(Si)-alloys from the N2-gas atm. was performed and a thermodn. description of the nitrogen behavior was attempted by using the Thermo-calc databank system. The \"up hill\" diffusion of nitrogen towards the front of nitride ppts. can be predicted. [on SciFinder (R)

    New model for tracer-diffusion in amorphous solid

    No full text
    The tracer-diffusion and structure of polymorphic states of amorphous solid is studied by mean of the statistic relaxation technique and simplex analysis. Several different metastable states of amorphous iron have been constructed based on the model containing 2 × 105 atoms. All models have almost the same pair radial distribution functions, but they differ in the potential energy per atom and the density. We found a large number of vacancy-simplexes which varies according to the relaxation and serves as a diffusion vehicle. New diffusion mechanism for tracer-diffusion is found of which the elementary diffusion process likes a collapse of “microscopic bubble” in amorphous matrix. This includes a jump of diffusing atom and the collective movement of a large number of neighboring atoms. The diffusion constant D determined in accordance with considered diffusion mechanism is in reasonable agreement with experimental data. The decrease in diffusion constant D upon thermal annealing is explained by the reducing vacancy-simplex concentration which is caused by both the local atomic rearrangement and the elimination of excess free volume
    corecore