1,277 research outputs found

    On classical string configurations

    Full text link
    Equations which define classical configurations of strings in R3R^3 are presented in a simple form. General properties as well as particular classes of solutions of these equations are considered.Comment: 10 pages, Latex, no figures, trivial corrections, submitted to Modern Physics Letters

    PCA detection and denoising of Zeeman signatures in stellar polarised spectra

    Full text link
    Our main objective is to develop a denoising strategy to increase the signal to noise ratio of individual spectral lines of stellar spectropolarimetric observations. We use a multivariate statistics technique called Principal Component Analysis. The cross-product matrix of the observations is diagonalized to obtain the eigenvectors in which the original observations can be developed. This basis is such that the first eigenvectors contain the greatest variance. Assuming that the noise is uncorrelated a denoising is possible by reconstructing the data with a truncated basis. We propose a method to identify the number of eigenvectors for an efficient noise filtering. Numerical simulations are used to demonstrate that an important increase of the signal to noise ratio per spectral line is possible using PCA denoising techniques. It can be also applied for detection of magnetic fields in stellar atmospheres. We analyze the relation between PCA and commonly used well-known techniques like line addition and least-squares deconvolution. Moreover, PCA is very robust and easy to compute.Comment: accepted to be published in A&

    Atomic alignment and Diagnostics of Magnetic Fields in Diffuse Media

    Full text link
    We continue our studies of atomic alignment in diffuse media, in particularly, in interstellar and circumstellar media, with the goal of developing new diagnostics of magnetic fields in these environments. We understand atomic alignment as alignment of atoms or ions in their ground state. Such atoms are sensitive to weak magnetic fields. In particular, we provide predictions of the polarization that arises from astrophysically important aligned atoms (ions) with fine structure of the ground level, namely, OI and SII and Ti II. Unlike our earlier papers which dealt with weak fields only, a substantial part of our current paper is devoted to the studies of atomic alignment when magnetic fields get strong enough to affect the emission from the excited level, i.e. with the regime when the magnetic splitting is comparable to the line-width. This is a regime of Hanle effect modified by the atomic alignment. Using an example of emission and absorption lines of SII ion we demonstrate how polarimetric studies can probe magnetic fields in circumstellar regions and accretion disks. In addition, we show that atomic alignment induced by anisotropic radiation can induce substantial variations of magnetic dipole transitions within the ground state, thus affecting abundance studies based on this emission. Moreover, the radio emission is polarized, provides a new way to study magnetic fields, e.g. at the epoch of Universe reionization.Comment: Minor changes, accepted to Ap

    Unified Treatment of Heterodyne Detection: the Shapiro-Wagner and Caves Frameworks

    Full text link
    A comparative study is performed on two heterodyne systems of photon detectors expressed in terms of a signal annihilation operator and an image band creation operator called Shapiro-Wagner and Caves' frame, respectively. This approach is based on the introduction of a convenient operator ψ^\hat \psi which allows a unified formulation of both cases. For the Shapiro-Wagner scheme, where [ψ^,ψ^]=0[\hat \psi, \hat \psi^{\dag}] =0, quantum phase and amplitude are exactly defined in the context of relative number state (RNS) representation, while a procedure is devised to handle suitably and in a consistent way Caves' framework, characterized by [ψ^,ψ^]0[\hat \psi, \hat \psi^{\dag}] \neq 0, within the approximate simultaneous measurements of noncommuting variables. In such a case RNS phase and amplitude make sense only approximately.Comment: 25 pages. Just very minor editorial cosmetic change

    Extended thromboprophylaxis with betrixaban in acutely ill medical patients

    Get PDF
    BACKGROUND: Patients with acute medical illnesses are at prolonged risk for venous thrombosis. However, the appropriate duration of thromboprophylaxis remains unknown. METHODS: Patients who were hospitalized for acute medical illnesses were randomly assigned to receive subcutaneous enoxaparin (at a dose of 40 mg once daily) for 10±4 days plus oral betrixaban placebo for 35 to 42 days or subcutaneous enoxaparin placebo for 10±4 days plus oral betrixaban (at a dose of 80 mg once daily) for 35 to 42 days. We performed sequential analyses in three prespecified, progressively inclusive cohorts: patients with an elevated d-dimer level (cohort 1), patients with an elevated d-dimer level or an age of at least 75 years (cohort 2), and all the enrolled patients (overall population cohort). The statistical analysis plan specified that if the between-group difference in any analysis in this sequence was not significant, the other analyses would be considered exploratory. The primary efficacy outcome was a composite of asymptomatic proximal deep-vein thrombosis and symptomatic venous thromboembolism. The principal safety outcome was major bleeding. RESULTS: A total of 7513 patients underwent randomization. In cohort 1, the primary efficacy outcome occurred in 6.9% of patients receiving betrixaban and 8.5% receiving enoxaparin (relative risk in the betrixaban group, 0.81; 95% confidence interval [CI], 0.65 to 1.00; P=0.054). The rates were 5.6% and 7.1%, respectively (relative risk, 0.80; 95% CI, 0.66 to 0.98; P=0.03) in cohort 2 and 5.3% and 7.0% (relative risk, 0.76; 95% CI, 0.63 to 0.92; P=0.006) in the overall population. (The last two analyses were considered to be exploratory owing to the result in cohort 1.) In the overall population, major bleeding occurred in 0.7% of the betrixaban group and 0.6% of the enoxaparin group (relative risk, 1.19; 95% CI, 0.67 to 2.12; P=0.55). CONCLUSIONS: Among acutely ill medical patients with an elevated d-dimer level, there was no significant difference between extended-duration betrixaban and a standard regimen of enoxaparin in the prespecified primary efficacy outcome. However, prespecified exploratory analyses provided evidence suggesting a benefit for betrixaban in the two larger cohorts. (Funded by Portola Pharmaceuticals; APEX ClinicalTrials.gov number, NCT01583218.)

    Study of Interplanetary Magnetic Field with Ground State Alignment

    Full text link
    We demonstrate a new way of studying interplanetary magnetic field -- Ground State Alignment (GSA). Instead of sending thousands of space probes, GSA allows magnetic mapping with any ground telescope facilities equipped with spectropolarimeter. The polarization of spectral lines that are pumped by the anisotropic radiation from the Sun is influenced by the magnetic realignment, which happens for magnetic field (<1G). As a result, the linear polarization becomes an excellent tracer of the embedded magnetic field. The method is illustrated by our synthetic observations of the Jupiter's Io and comet Halley. Polarization at each point was constructed according to the local magnetic field detected by spacecrafts. Both spatial and temporal variations of turbulent magnetic field can be traced with this technique as well. The influence of magnetic field on the polarization of scattered light is discussed in detail. For remote regions like the IBEX ribbons discovered at the boundary of interstellar medium, GSA provides a unique diagnostics of magnetic field.Comment: 11 pages, 19 figures, published in Astrophysics and Space Scienc

    Conformally parametrized surfaces associated with CP^(N-1) sigma models

    Full text link
    Two-dimensional conformally parametrized surfaces immersed in the su(N) algebra are investigated. The focus is on surfaces parametrized by solutions of the equations for the CP^(N-1) sigma model. The Lie-point symmetries of the CP^(N-1) model are computed for arbitrary N. The Weierstrass formula for immersion is determined and an explicit formula for a moving frame on a surface is constructed. This allows us to determine the structural equations and geometrical properties of surfaces in R^(N^2-1). The fundamental forms, Gaussian and mean curvatures, Willmore functional and topological charge of surfaces are given explicitly in terms of any holomorphic solution of the CP^2 model. The approach is illustrated through several examples, including surfaces immersed in low-dimensional su(N) algebras.Comment: 32 page

    Novel approach to the study of quantum effects in the early universe

    Full text link
    We develop a theoretical frame for the study of classical and quantum gravitational waves based on the properties of a nonlinear ordinary differential equation for a function σ(η)\sigma(\eta) of the conformal time η\eta, called the auxiliary field equation. At the classical level, σ(η)\sigma(\eta) can be expressed by means of two independent solutions of the ''master equation'' to which the perturbed Einstein equations for the gravitational waves can be reduced. At the quantum level, all the significant physical quantities can be formulated using Bogolubov transformations and the operator quadratic Hamiltonian corresponding to the classical version of a damped parametrically excited oscillator where the varying mass is replaced by the square cosmological scale factor a2(η)a^{2}(\eta). A quantum approach to the generation of gravitational waves is proposed on the grounds of the previous η\eta-dependent Hamiltonian. An estimate in terms of σ(η)\sigma(\eta) and a(η)a(\eta) of the destruction of quantum coherence due to the gravitational evolution and an exact expression for the phase of a gravitational wave corresponding to any value of η\eta are also obtained. We conclude by discussing a few applications to quasi-de Sitter and standard de Sitter scenarios.Comment: 20 pages, to appear on PRD. Already published background material has been either settled up in a more compact form or eliminate
    corecore