95 research outputs found

    Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: a case report.

    Get PDF
    We identified a PSEN1 (presenilin 1) mutation carrier from the world's largest autosomal dominant Alzheimer's disease kindred, who did not develop mild cognitive impairment until her seventies, three decades after the expected age of clinical onset. The individual had two copies of the APOE3 Christchurch (R136S) mutation, unusually high brain amyloid levels and limited tau and neurodegenerative measurements. Our findings have implications for the role of APOE in the pathogenesis, treatment and prevention of Alzheimer's disease

    Assessment of insulin resistance by a 13C glucose breath test: a new tool for early diagnosis and follow-up of high-risk patients

    Get PDF
    <p>Abstract</p> <p>Background/Aims</p> <p>Insulin resistance (IR) plays an important role in the pathogenesis of diabetes and non-alcoholic fatty liver disease (NAFLD). Current methods for insulin resistance detection are cumbersome, or not sensitive enough for early detection and follow-up. The BreathID<sup>® </sup>system can continuously analyse breath samples in real-time at the point-of-care. Here we determined the efficacy of the BreathID<sup>® </sup>using the <sup>13</sup>C-Glucose breath test (GBT) for evaluation of insulin resistance.</p> <p>Methods</p> <p>Twenty healthy volunteers were orally administered 75 mg of <sup>13</sup>C-glucose 1-<sup>13</sup>C. An oral glucose tolerance test (OGTT) was performed immediately; followed by serum glucose and insulin level determinations using GBT. GBT and OGTT were repeated following exercise, which alters insulin resistance levels.</p> <p>Results</p> <p>Within-subject correlations of GBT parameters with serum glucose and serum insulin levels were high. Before and after exercise, between-subjects correlations were high between the relative insulin levels and the % dose recoveries at 90 min (PDR 90), and the cumulative PDRs at 60 min (CPDR 60). Pairwise correlations were identified between pre-exercise Homeostasis Model Assessment (HOMA) IR at 90 min and PDR 90; HOMA B (for beta cell function) 120 and CPDR 30; HOMA IR 60 and peak time post-exercise; and HOMA B 150 with PDR 150.</p> <p>Conclusions</p> <p>The non-invasive real-time BreathID<sup>® </sup>GBT reliably assesses changes in liver glucose metabolism, and the degree of insulin resistance. It may serve as a non-invasive tool for early diagnosis and follow up of patients in high-risk groups.</p

    Type II NKT Cells Stimulate Diet-Induced Obesity by Mediating Adipose Tissue Inflammation, Steatohepatitis and Insulin Resistance

    Get PDF
    The progression of obesity is accompanied by a chronic inflammatory process that involves both innate and acquired immunity. Natural killer T (NKT) cells recognize lipid antigens and are also distributed in adipose tissue. To examine the involvement of NKT cells in the development of obesity, C57BL/6 mice (wild type; WT), and two NKT-cell-deficient strains, Jα18−/− mice that lack the type I subset and CD1d−/− mice that lack both the type I and II subsets, were fed a high fat diet (HFD). CD1d−/− mice gained the least body weight with the least weight in perigonadal and brown adipose tissue as well as in the liver, compared to WT or Jα18−/− mice fed an HFD. Histologically, CD1d−/− mice had significantly smaller adipocytes and developed significantly milder hepatosteatosis than WT or Jα18−/− mice. The number of NK1.1+TCRβ+ cells in adipose tissue increased when WT mice were fed an HFD and were mostly invariant Vα14Jα18-negative. CD11b+ macrophages (Mφ) were another major subset of cells in adipose tissue infiltrates, and they were divided into F4/80high and F4/80low cells. The F4/80low-Mφ subset in adipose tissue was increased in CD1d−/− mice, and this population likely played an anti-inflammatory role. Glucose intolerance and insulin resistance in CD1d−/− mice were not aggravated as in WT or Jα18−/− mice fed an HFD, likely due to a lower grade of inflammation and adiposity. Collectively, our findings provide evidence that type II NKT cells initiate inflammation in the liver and adipose tissue and exacerbate the course of obesity that leads to insulin resistance

    The cognitive neuroscience of prehension: recent developments

    Get PDF
    Prehension, the capacity to reach and grasp, is the key behavior that allows humans to change their environment. It continues to serve as a remarkable experimental test case for probing the cognitive architecture of goal-oriented action. This review focuses on recent experimental evidence that enhances or modifies how we might conceptualize the neural substrates of prehension. Emphasis is placed on studies that consider how precision grasps are selected and transformed into motor commands. Then, the mechanisms that extract action relevant information from vision and touch are considered. These include consideration of how parallel perceptual networks within parietal cortex, along with the ventral stream, are connected and share information to achieve common motor goals. On-line control of grasping action is discussed within a state estimation framework. The review ends with a consideration about how prehension fits within larger action repertoires that solve more complex goals and the possible cortical architectures needed to organize these actions

    Diagnosis and treatment of viral diseases in recipients of allogeneic hematopoietic stem cell transplantation

    Full text link

    Use of the methacetin breath test to classify the risk of cirrhotic complications and mortality in patients evaluated/listed for liver transplantation

    No full text
    BACKGROUND & AIMS: The MELD score predicts short-term mortality in patients with cirrhosis; however, some patients with low scores develop complications and die unexpectedly. Consequently, we evaluated the diagnostic accuracy of the methacetin breath test (MBT), an assay of liver metabolic function, and the MELD score, to predict the risk of complications of cirrhosis and liver-related death. METHODS: One hundred sixty-five patients with cirrhosis received oral (13)C-methacetin; (13)CO2 was measured in expired breath (BreathID; Exalenz). The cumulative percent dose recovery of (13)CO2 at 20 min with a threshold of ⩽0.55% (high-risk) and \u3e0.55% (low risk) most accurately predicted liver-related death and the risk of cirrhotic complications within one year. MELD thresholds of ⩾15 and ⩾19 were also examined to predict the same endpoints. RESULTS: Dose recovery ⩽0.55% and MELD ⩾19 both predicted liver-related death (HR 12.6 [95% CI 1.6-98.3]; p=0.016, and HR 5.5 [1.6-18.9]; p=0.007, respectively); MELD ⩾15 did not. Dose recovery ⩽0.55% (HR 1.9 [1.1-3.2]; p=0.03) also predicted the risk of ⩾1 complication(s), and was particularly able to foretell the risk of development/exacerbation of ascites (HR 4.7 [1.8-11.9]; p=0.001), which was not achieved by either MELD threshold. Finally, in patients with MELD CONCLUSIONS: In this pilot study, methacetin breath testing predicted the risk of liver-related death and development/exacerbation of ascites more accurately than MELD ⩾15 or ⩾19. In patients with low MELD

    A Human Organoid Model of Aggressive Hepatoblastoma for Disease Modeling and Drug Testing

    No full text
    Hepatoblastoma is the most common childhood liver cancer. Although survival has improved significantly over the past few decades, there remains a group of children with aggressive disease who do not respond to current treatment regimens. There is a critical need for novel models to study aggressive hepatoblastoma as research to find new treatments is hampered by the small number of laboratory models of the disease. Organoids have emerged as robust models for many diseases, including cancer. We have generated and characterized a novel organoid model of aggressive hepatoblastoma directly from freshly resected patient tumors as a proof of concept for this approach. Hepatoblastoma tumor organoids recapitulate the key elements of patient tumors, including tumor architecture, mutational profile, gene expression patterns, and features of Wnt/&beta;-catenin signaling that are hallmarks of hepatoblastoma pathophysiology. Tumor organoids were successfully used alongside non-tumor liver organoids from the same patient to perform a drug screen using twelve candidate compounds. One drug, JQ1, demonstrated increased destruction of liver organoids from hepatoblastoma tumor tissue relative to organoids from the adjacent non-tumor liver. Our findings suggest that hepatoblastoma organoids could be used for a variety of applications and have the potential to improve treatment options for the subset of hepatoblastoma patients who do not respond to existing treatments
    corecore