424 research outputs found

    Micro-Analytical Data of Au Mineralization at Atud Gold Deposit, Eastern Desert, Egypt

    Get PDF
    Atud gold deposits located at the central part of the Egyptian Eastern Desert of Egypt. It represents the vein-type gold mineralization at the Arabian-Nubian Shield in North Africa. Furthermore, this Au mineralization was closely associated with intense hydrothermal alteration haloes along the NW-SE brittle-ductile shear zone at the mined area. This study reports new data about the mineral chemistry of the hydrothermal and metamorphic minerals as well as the geothermobarometry of the metamorphism and determines the paragenetic interrelationship between Au-bearing sulfides and gangue minerals in Atud gold mine by using the electron microprobe analyses (EMPA). These analyses revealed that the ore minerals associated with gold mineralization are arsenopyrite, pyrite, chalcopyrite, sphalerite, pyrrhotite, tetrahedrite and gersdorffite-cobaltite. Also, the gold is highly associated with arsenopyrite and As-bearing pyrite as well as sphalerite with an average ~70 wt.% Au (+26 wt.% Ag) whereas it occurred either as disseminated grains or along microfractures of arsenopyrite and pyrite in altered wallrocks and mineralized quartz veins. Arsenopyrite occurs as individual rhombic or prismatic zoned grains disseminated in the quartz veins and wallrock and is intergrown with euhedral arsenian pyrite (with ~2 atom % As). Pyrite is As-bearing pyrite that occurs as disseminated subhedral or anhedral zoned grains replacing by chalcopyrite in some samples. Inclusions of sphalerite and pyrrhotite are common in the large pyrite grains. Secondary minerals such as sericite, calcite, chlorite and albite are disseminated either in altered wallrocks or in quartz veins. Sericite is the main secondary and alteration mineral associated with Au-bearing sulfides and calcite. Electron microprobe data of the sericite show that its muscovite component is high in all analyzed flakes (XMs= an average 0.89) and the phengite content (Mg+Fe a.p.f.u.) varies from 0.10 to 0.55 and from 0.13 to 0.29 in wallrocks and mineralized veins respectively. Carbonate occurs either as thin veinlets or disseminated grains in the mineralized quartz vein and/or the wallrocks. It has higher amount of calcite (CaCO3) and low amount of MgCO3 as well as FeCO3 in the wallrocks relative to the quartz veins. Chlorite flakes are associated with arsenopyrite and their electron probe data revealed that they are generally Fe-rich composition (FeOt 20.64–20.10 wt.%) and their composition is clinochlore either pycnochlorite or ripidolite with Al (iv) = 2.30-2.36 pfu and 2.41-2.51 pfu and with narrow range of estimated formation temperatures are (289–295°C) and (301-312°C) for pycnochlorite and ripidolite respectively. Albite is accompanied with chlorite with an Ab content is high in all analyzed samples (Ab= 95.08-99.20)

    Porphyry Cu-Mo-(Au) Mineralization at Paraga Area, Nakhchivan District, Azerbaijan: Evidence from Mineral Paragenesis, Hyrothermal Alteration and Geochemical Studies

    Get PDF
    The Paraga area is located at the extreme eastern part of Nakhchivan district at the boundary with Armenia. The field study is situated at Ordubad region placed in 9 km from Paraga village and stays at 2300-2800 m height over sea level. It lies within a region of low-grade metamorphic porphyritic volcanic and plutonic rocks. The detailed field studies revealed that this area composed mainly of metagabbro-diorite intrusive rocks with porphyritic character emplaced into meta-andesitic rocks. This complex is later intruded by unmapped olivine gabbroic rocks. The Cu-Mo-(Au) mineralization at Paraga deposit is vein-type mineralization that is essentially related to quartz veins stockwork which cut the dioritic rocks and concentrated at the eastern and northeastern parts of the area with different directions N80W, N25W, N70E and N45E. Also, this mineralization is associated with two shearing zones directed N75W and N15E. The host porphyritic rocks were affected by intense sulfidation, carbonatization, sericitization and silicification with pervasive hematitic alterations accompanied with mineralized quartz veins and quartz-carbonate veins. Sulfide minerals which are chalcopyrite, pyrite, arsenopyrite and sphalerite occurred in two cases either inside these mineralized quartz veins or disseminated in the highly altered rocks as well as molybdenite and also at the peripheries between the altered host rock and veins. Gold found as inclusion disseminated in arsenopyrite and pyrite as well as in their cracks

    BOLD and EEG signal variability at rest differently relate to aging in the human brain

    No full text
    Variability of neural activity is regarded as a crucial feature of healthy brain function, and several neuroimaging approaches have been employed to assess it noninvasively. Studies on the variability of both evoked brain response and spontaneous brain signals have shown remarkable changes with aging but it is unclear if the different measures of brain signal variability – identified with either hemodynamic or electrophysiological methods – reflect the same underlying physiology. In this study, we aimed to explore age differences of spontaneous brain signal variability with two different imaging modalities (EEG, fMRI) in healthy younger (25 ± 3 years, N = 135) and older (67 ± 4 years, N = 54) adults. Consistent with the previous studies, we found lower blood oxygenation level dependent (BOLD) variability in the older subjects as well as less signal variability in the amplitude of low-frequency oscillations (1–12 Hz), measured in source space. These age-related reductions were mostly observed in the areas that overlap with the default mode network. Moreover, age-related increases of variability in the amplitude of beta-band frequency EEG oscillations (15–25 Hz) were seen predominantly in temporal brain regions. There were significant sex differences in EEG signal variability in various brain regions while no significant sex differences were observed in BOLD signal variability. Bivariate and multivariate correlation analyses revealed no significant associations between EEG- and fMRI-based variability measures. In summary, we show that both BOLD and EEG signal variability reflect aging-related processes but are likely to be dominated by different physiological origins, which relate differentially to age and sex

    Porphyry Cu-Mo-(Au) Mineralization at Paraga Area, Nakhchivan District, Azerbaijan: Evidence from Mineral Paragenesis, Hyrothermal Alteration and Geochemical Studies

    Get PDF
    The Paraga area is located at the extreme eastern part of Nakhchivan district at the boundary with Armenia. The field study is situated at Ordubad region placed in 9 km from Paraga village and stays at 2300-2800 m height over sea level. It lies within a region of low-grade metamorphic porphyritic volcanic and plutonic rocks. The detailed field studies revealed that this area composed mainly of metagabbro-diorite intrusive rocks with porphyritic character emplaced into meta-andesitic rocks. This complex is later intruded by unmapped olivine gabbroic rocks. The Cu-Mo-(Au) mineralization at Paraga deposit is vein-type mineralization that is essentially related to quartz veins stockwork which cut the dioritic rocks and concentrated at the eastern and northeastern parts of the area with different directions N80W, N25W, N70E and N45E. Also, this mineralization is associated with two shearing zones directed N75W and N15E. The host porphyritic rocks were affected by intense sulfidation, carbonatization, sericitization and silicification with pervasive hematitic alterations accompanied with mineralized quartz veins and quartz-carbonate veins. Sulfide minerals which are chalcopyrite, pyrite, arsenopyrite and sphalerite occurred in two cases either inside these mineralized quartz veins or disseminated in the highly altered rocks as well as molybdenite and also at the peripheries between the altered host rock and veins. Gold found as inclusion disseminated in arsenopyrite and pyrite as well as in their cracks

    Relationship between regional white matter hyperintensities and alpha oscillations in older adults

    Get PDF
    Aging is associated with increased white matter hyperintensities (WMHs) and with alterations of alpha oscillations (7–13 Hz). However, a crucial question remains, whether changes in alpha oscillations relate to aging per se or whether this relationship is mediated by age-related neuropathology like WMHs. Using a large cohort of cognitively healthy older adults (N=907, 60-80 years), we assessed relative alpha power, alpha peak frequency, and long-range temporal correlations (LRTC) from resting-state EEG. We further associated these parameters with voxel-wise WMHs from 3T MRI. We found that a higher prevalence of WMHs in the superior and posterior corona radiata as well as in the thalamic radiation was related to elevated alpha power, with the strongest association in the bilateral occipital cortex. In contrast, we observed no significant relation of the WMHs probability with alpha peak frequency and LRTC. Finally, higher age was associated with elevated alpha power via total WMH volume. We suggest that an elevated alpha power is a consequence of WMH affecting a spatial organization of alpha sources

    Heart failure is independently associated with white matter lesions: Insights from the population-based LIFE-Adult Study

    Get PDF
    Aims: White matter lesions (WML) are common structural alterations in the white matter of the brain and their prevalence increases with age. They are associated with cerebral ischaemia and cognitive dysfunction. Patients with heart failure (HF) are at risk for cognitive decline. We hypothesized that the presence and duration of HF are associated with WML. Methods and results: The LIFE-Adult Study is a population-based study of 10 000 residents of Leipzig, Germany. WML were quantitated in 2490 participants who additionally underwent cerebral MRI using the Fazekas score. Mean age was 64 years, and 46% were female; 2156 (86.6%) subjects had Fazekas score of 0-1, and 334 (13.4%) had Fazekas score of 2-3. Thirty participants had a medical history of HF, 1019 had hypertension, and 51 had a history of stroke. Median left ventricular ejection fraction of the participants with HF was 57% (interquartile ranges 54-62). Age, troponin T, NT-proBNP, body mass index, history of acute myocardial infarction, stroke, HF, and diabetes were positively associated with WML in univariate analysis. On multivariate analysis, age, hypertension, stroke, and HF were independently associated with WML. The odd's ratio for the association of WML (Fazekas 2-3) with HF was 2.8 (95% CI 1.2-6.5; P = 0.019). WML increased with longer duration of HF (P = 0.036 for trend). Conclusions: In addition to age, hypertension, and stroke, the prevalence and duration of HF are independently associated with WML. This observation sets the stage to investigate the prognostic value of WML in HF and the impact of HF therapies on WML

    Rapid volumetric brain changes after acute psychosocial stress

    Get PDF
    Stress is an important trigger for brain plasticity: Acute stress can rapidly affect brain activity and functional connectivity, and chronic or pathological stress has been associated with structural brain changes. Measures of structural magnetic resonance imaging (MRI) can be modified by short-term motor learning or visual stimulation, suggesting that they also capture rapid brain changes. Here, we investigated volumetric brain changes (together with changes in T1 relaxation rate and cerebral blood flow) after acute stress in humans as well as their relation to psychophysiological stress measures.Sixty-seven healthy men (25.8±2.7 years) completed a standardized psychosocial laboratory stressor (Trier Social Stress Test) or a control version while blood, saliva, heart rate, and psychometrics were sampled. Structural MRI (T1 mapping / MP2RAGE sequence) at 3T was acquired 45 min before and 90 min after intervention onset. Grey matter volume (GMV) changes were analysed using voxel-based morphometry. Associations with endocrine, autonomic, and subjective stress measures were tested with linear models.We found significant group-by-time interactions in several brain clusters including anterior/mid-cingulate cortices and bilateral insula: GMV was increased in the stress group relative to the control group, in which several clusters showed a GMV decrease. We found a significant group-by-time interaction for cerebral blood flow, and a main effect of time for T1 values (longitudinal relaxation time). In addition, GMV changes were significantly associated with state anxiety and heart rate variability changes.Such rapid GMV changes assessed with VBM may be induced by local tissue adaptations to changes in energy demand following neural activity. Our findings suggest that endogenous brain changes are counteracted by acute psychosocial stress, which emphasizes the importance of considering homeodynamic processes and generally highlights the influence of stress on the brain

    Positivity in younger and in older age: Associations with future time perspective and socioemotional functioning

    Get PDF
    Aging has been associated with a motivational shift to positive over negative information (i.e., positivity effect), which is often explained by a limited future time perspective (FTP) within the framework of socioemotional selectivity theory (SST). However, whether a limited FTP functions similarly in younger and older adults, and whether inter-individual differences in socioemotional functioning are similarly associated with preference for positive information (i.e., positivity) is still not clear. We investigated younger (20–35 years, N = 73) and older (60–75 years, N = 56) adults’ gaze preferences on pairs of happy, angry, sad, and neutral faces using an eye-tracking system. We additionally assessed several parameters potentially underlying inter-individual differences in emotion processing such as FTP, stress, cognitive functioning, social support, emotion regulation, and well-being. While we found no age-related differences in positivity when the entire trial duration was considered, older adults showed longer fixations on the more positive face in later stages of processing (i.e., positivity shifts). This allocation of resources toward more positive stimuli might serve an emotion regulatory purpose and seems consistent with the SST. However, our findings suggest that age moderates the relationship between FTP and positivity shifts, such that the relationship between FTP and positivity preferences was negative in older, and positive in younger adults, potentially stemming from an age-related differential meaning of the FTP construct across age. Furthermore, our exploratory analyses showed that along with the age and FTP interaction, lower levels of worry also played a significant role in positivity shifts. We conclude that positivity effects cannot be solely explained by aging, or the associated reduced FTP per se, but is rather determined by a complex interplay of psychosocial and emotional features

    Attenuation of the heartbeat-evoked potential in patients with atrial fibrillation

    Get PDF
    Background The heartbeat-evoked potential (HEP) is a brain response to each heartbeat, which is thought to reflect cardiac signaling to central autonomic areas and suggested to be a marker of internal body awareness (e.g., interoception). Objectives Because cardiac communication with central autonomic circuits has been shown to be impaired in patients with atrial fibrillation (AF), we hypothesized that HEPs are attenuated in these patients. Methods By simultaneous electroencephalography and electrocardiography recordings, HEP was investigated in 56 individuals with persistent AF and 56 control subjects matched for age, sex, and body mass index. Results HEP in control subjects was characterized by right frontotemporal negativity peaking around 300 to 550 ms after the R-peak, consistent with previous studies. In comparison with control subjects, HEP amplitudes were attenuated, and HEP amplitude differences remained significant when matching the samples for heart frequency, stroke volume (assessed by echocardiography), systolic blood pressure, and the amplitude of the T-wave. Effect sizes for the group differences were medium to large (Cohen’s d between 0.6 and 0.9). EEG source analysis on HEP amplitude differences pointed to a neural representation within the right insular cortex, an area known as a hub for central autonomic control. Conclusions The heartbeat-evoked potential is reduced in AF, particularly in the right insula. We speculate that the attenuated HEP in AF may be a marker of impaired heart–brain interactions. Attenuated interoception might furthermore underlie the frequent occurrence of silent AF
    • …
    corecore