7,682 research outputs found

    Excitation functions of (n,p) and (n,2n) reactions of tantalum, rhenium, and iridium in the neutron energy range up to 20 MeV

    Get PDF
    314-318The excitation functions for (n,p) and (n,2n) reactions up to 20 MeV on Tantalum, Rhenium, and Iridium have been calculated using the TALYS-1.9 nuclear reaction model code. Different level density models have been used to get a good agreement between the calculated and measured data. In the present work, we have carried out the TALYS-1.9 calculations to quantitatively understand the experimental data by optimizing input parameters for 181Ta(n,p)181Hf, 181Ta(n,2n)180Ta, 185Re(n,p)185mW, 185Re(n,2n)184Re,191Ir(n,p)191Os and 191Ir(n,2n)190Ir. Theoretical results have been compared with the experimental data (taken from the EXFOR database) up to 20 MeV. Also, the results have been compared with the ENDF/B-VIII.0 and TENDL-2015 evaluated data

    Shell model study of first-forbidden beta decay around 208^{208}Pb

    Full text link
    In the present work, we report a systematic theoretical study of the logft\log ft values for the forbidden β\beta^- decay transitions in the 208^{208}Pb region. For this, we have considered 206^{206}Hg \rightarrow 206^{206}Tl, 208^{208}Hg \rightarrow 208^{208}Tl, 206^{206}Tl \rightarrow 206^{206}Pb and 208^{208}Tl \rightarrow 208^{208}Pb transitions. We have performed shell model calculations using KHH7B interaction in valence shell 58-114 for protons and 100-164 for neutrons by considering 1p1h{\it 1p-1h} excitations for both protons and neutrons simultaneously for daughter nuclei. This study presents the first shell model results of β\beta^--decay corresponding to the recent experimental data.Comment: 4 pages, 1 figure, 1 table, Journal of Physics: Conference Series [28th International Nuclear Physics Conference (INPC 2022) held at Cape Town, South Africa

    Pangenomics in microbial and crop research: Progress, applications, and perspectives

    Get PDF
    Advances in sequencing technologies and bioinformatics tools have fueled a renewed interest in whole genome sequencing efforts in many organisms. The growing availability of multiple genome sequences has advanced our understanding of the within-species diversity, in the form of a pangenome. Pangenomics has opened new avenues for future research such as allowing dissection of complex molecular mechanisms and increased confidence in genome mapping. To comprehensively capture the genetic diversity for improving plant performance, the pangenome concept is further extended from species to genus level by the inclusion of wild species, constituting a super-pangenome. Characterization of pangenome has implications for both basic and applied research. The concept of pangenome has transformed the way biological questions are addressed. From understanding evolution and adaptation to elucidating host–pathogen interactions, finding novel genes or breeding targets to aid crop improvement to design effective vaccines for human prophylaxis, the increasing availability of the pangenome has revolutionized several aspects of biological research. The future availability of high-resolution pangenomes based on reference-level near-complete genome assemblies would greatly improve our ability to address complex biological problems

    Combining ability and heterosis analysis for fibre yield and quality parameters in roselle (Hibiscus sabdariffa L.)

    Get PDF
    Roselle (Hibiscus sabdariffa L.) is second important bast fibre crop after jute in India. With an aim to ex-ploit non-additive genetic variance present experiment was designed to identify good general combining parents and specific cross combination for fibre yield and fibre quality parameters (fibre fineness, fibre tenacity) in roselle. A total of 11 parents were crossed in complete diallel fashion which resulted 55 F1, 55 RF1 (reciprocal F1). Parents, F1s and RF1s were grown in randomized block design. Analysis of variance revealed significant differences (P< 0.01, P<0.05) among the parents and their hybrids. The parents AMV 1, AMV 5, GR 27 and AHS 160 were identified as good combiners since they recorded significant general combining ability (GCA) effects for fibre yield and quality parameters. Further, For fibre yield only three crosses (AMV 1 × AMV 4, AMV 1 × GR 27, HS 4288 × JRR 07) showed significant specific combining ability (SCA) effects from them hybrid AMV 1 × GR 27 (fibre yield=27.37g/ plant) exhibited positively significant best parent (Non bris 4, Mean fibre yield=21.16g/plant) heterosis (29.35%). Similarly, for fibre tenacity, hybrid GR 27 × JRR 07 (fibre tenacity=23.47g/tex) exhibited positively significant best parent (HS 4288; fibre tenacity=20.35g/tex) heterosis (15.30%)

    Response of african marigold to NPK , biofertilizers and spacings

    Get PDF
    A field experiment on African marigold (TagetserectaL.) was conducted during winter season of 2014-15 to study the effect of NPK, biofertilizers and plant spacings on growth and yield of African marigold (Tagetes erecta Linn). The treatment combinations F6 100 % RDF of NPK + Azotobacter + PSB recorded the maximum longevity of intact flower (27.93), average diameter of flower (7.37 cm), average weight of flower (8.96 g) number of flowers per plant (56.54), yield of flowers per plant (515.62 g), per plot (11.93 kg) and highest flower yield ha (184.13 q). The spacing D3 (60× 60 cm) registered significant (5 %) maximum longevity of intact flower, larger size flower (7.80 cm), average weight of flower (9.14 g) and highest flower yield per plant (456.22 g). Highest flower yield per plot (10.19 kg), number of flower per plant (52.22) and per hectare flower yield (157.29 q/ha) with 60× 45 cm. These results are conclusive that application of 100 % RDF of NPK + Azotobacter+ PSB and plant spacing (60× 45 cm) may positively increase the growth and flowers yield parameters of marigold

    Designing multi-period supply chain network considering risk and emission: a multi-objective approach

    Get PDF
    This research formulates a multi-objective problem (MOP) for supply chain network (SCN) design by incorporating the issues of social relationship, carbon emissions, and supply chain risks such as disruption and opportunism. The proposed MOP includes three conflicting objectives: maximization of total profit, minimization of supply disruption and opportunism risks, and minimization of carbon emission considering a number of supply chain constraints. Furthermore, this research analyses the effect of social relationship levels between different tiers of SCN on the profitability, risk, and emission over the time. In this regard, we focus on responding to the following questions. (1) How does the evolving social relationship affect the objectives of the supply chain (SC)? (2) How do the upstream firms’ relationships affect the relationships of downstream firms, and how these relationships influence the objectives of the SC? (3) How does the supply disruption risk interact with the opportunism risk through supply chain relationships, and how these risks affect the objectives of the SC? (4) How do these three conflicting objectives trade-off? A Pareto-based multi-objective evolutionary algorithm–non-dominated sorting genetic algorithm-II (NSGA-II) has been employed to solve the presented problem. In order to improve the quality of solutions, tuning parameters of the NSGA-II are modulated using Taguchi approach. An illustrative example is presented to manifest the capability of the model and the algorithm. The results obtained evince the robust performance of the proposed MOP

    Boiling Study of Nanofluid on Graphene Coated Substrate

    Get PDF
    A comparative study is done to understand the effect of variation in surface energy of substrates on boiling and dry-out characteristics of nanofluid. Droplet of TiO2 nanofluid on glass substrate shows strong pinning along the droplet perimeter. As the droplet evaporates, boundary of nanofluid droplet recedes slowly towards the center leaving a ring-shaped stain of concentrated nanoparticles. Surface energy of glass substrate is modified by graphene coating, confirmed by increase in contact angle. While boiling of nanofluid on graphene coated glass substrate shows an almost uniform dry-out pattern. Reduced wettability of nanofluid droplet on graphene coated glass substrate is responsible for this behavior

    Immunosuppressive and anti-cancer potential of aqueous extract of Solanum Xanthocarpum

    Get PDF
    In this study whole plant aqueous extract of Solanum Xanthocarpum (HAESX) was investigated to assess its effect on humoral immune response along with interleukin-2 (IL-2) production and its expression in Wistar albino rats splenocytes culture. Anticancer potential of HAESX was investigated using rat lever hepatoma (N1S1 cancerous cell line). The effect of HAESX over humoral immune response was studied using four groups of five animals each (Group-I as control, Group -II orally fed with 125 mg/kg body weight, Group -III orally fed with 250 mg/kg body weight and Group -IV orally fed with 500 mg/kg body weight of HAESX). Quantification of IL-2 was done by sandwich ELISA and its expression was detected by the real time PCR. SRB assay (Sulforhodamine B) was done for detecting the effect of HAESX on N1S1 cell line. Dose dependent decrease in antibody titer was observed and production of IL-2 was also decreased significantly. Suppression of IL-2 production at 250 µg/mL and 500 µg/mL dose was also confirmed by the Real time PCR. Relative fold change in the expression of IL-2 gene was 592.22 and 10.77 at 250, 500 μg/mL HAESX concentrations respectively with respect to control. Dose dependent suppression of percent growth of N1S1 cells with increasing concentrations (10, 20, 40 and 80 µg/mL) of HAESX was found. It was concluded that S. xanthocarpum have the immunosuppressive, and anti cancer activity that can be further explore in treatment of various inflammatory and autoimmune disease
    corecore