10 research outputs found

    Orientation-dependent interaction between Drosophila insulators is a property of this class of regulatory elements

    Get PDF
    Insulators are defined as a class of regulatory elements that delimit independent transcriptional domains within eukaryotic genomes. According to previous data, an interaction (pairing) between some Drosophila insulators can support distant activation of a promoter by an enhancer. Here, we have demonstrated that pairs of well-studied insulators such as scsā€“scs, scsā€™ā€“scsā€™, 1A2ā€“1A2 and Wariā€“Wari support distant activation of the white promoter by the yeast GAL4 activator in an orientation-dependent manner. The same is true for the efficiency of the enhancer that stimulates white expression in the eyes. In all insulator pairs tested, stimulation of the white gene was stronger when insulators were inserted between the eye enhancer or GAL4 and the white promoter in opposite orientations relative to each other. As shown previously, Zw5, Su(Hw) and dCTCF proteins are required for the functioning of different insulators that do not interact with each other. Here, strong functional interactions have been revealed between DNA fragments containing binding sites for either Zw5 or Su(Hw) or dCTCF protein but not between heterologous binding sites [Zw5ā€“Su(Hw), dCTCFā€“Su(Hw), or dCTCFā€“Zw5]. These results suggest that insulator proteins can support selective interactions between distant regulatory elements
    corecore