218 research outputs found

    Use of Hydrothermal Carbonization and Cold Atmospheric Plasma for Surface Modification of Brewer’s Spent Grain and Activated Carbon

    Get PDF
    This paper presents results that show the effect of hydrothermal carbonization and subsequent cold plasma jet treatment with helium and argon on the structure and sorption properties of a material—spent brewery grain. Treatment of activated carbon, with a cold atmospheric plasma jet, was used comparatively. The effect of activation on the pore structure of the materials was carried out by the volumetric method at low pressure (N2, 77 K). The specific surface area as well as the total pore volume, average pore size, and pore size distribution were determined using different theoretical models. A high improvement in the sorption capacity parameter was obtained for hydrochars after cold atmospheric plasma jet treatment with an increase of 7.5 times (using He) and 11.6 times (using Ar) compared with hydrochars before cold atmospheric plasma jet treatment. The increase in specific surface area was five-fold (He) and fifteen-fold (Ar). For activated carbon, such a large change was not obtained after plasma activation. Regardless of the gas used, the increase in structural parameter values was 1.1–1.3

    Biocoal - Quality control and assurance

    Get PDF
    Torrefied biomass is said to have potential as a replacement for coal. One of the main goals of torrefaction is to make biomass resemble coal more in terms of its properties as a solid fuel. As a fuel, a novel fuel that is produced by thermal treatment of raw biomass, biocoal has to comply with the regulations of solid fuels from different regulatory bodies. The production regime is different in comparison to the thermally treated fuel already established on the market, such as charcoal. This might raise an issue with the bodies controlling the circulation of chemical substances in the market, such as ECHA in Europe. The aim of this paper is to recommend suitable analytical techniques in order to enable effective quality control. This is necessary if biomass of low and highly variable quality is supposed to become more uniform and turn into a commodity. Information given in many published studies seems sufficient to use of FTIR and NIR as quality control techniques. The use of NMR can be complementary but is limited due to the high cost of the analytical equipment and time-consuming sample preparation. Rapid testing techniques, such as FTIR ATR or NIR, might prove feasible for quality control of solid biofuels, such as biocoal, especially for in-house quality control purposes. This way proper quality assurance and compliance with various novel regulations, such as REACH, could be assured. Further research could be helpful, especially if results would be available in publicly available databases, such as Phyllis

    Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors

    Get PDF
    Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration

    Differentiation and Transplantation of Embryonic Stem Cell-Derived Cone Photoreceptors into a Mouse Model of End-Stage Retinal Degeneration

    Get PDF
    The loss of cone photoreceptors that mediate daylight vision represents a leading cause of blindness, for which cell replacement by transplantation offers a promising treatment strategy. Here, we characterize cone differentiation in retinas derived from mouse embryonic stem cells (mESCs). Similar to in vivo development, a temporal pattern of progenitor marker expression is followed by the differentiation of early thyroid hormone receptor β2-positive precursors and, subsequently, photoreceptors exhibiting cone-specific phototransduction-related proteins. We establish that stage-specific inhibition of the Notch pathway increases cone cell differentiation, while retinoic acid signaling regulates cone maturation, comparable with their actions in vivo. MESC-derived cones can be isolated in large numbers and transplanted into adult mouse eyes, showing capacity to survive and mature in the subretinal space of Aipl1−/− mice, a model of end-stage retinal degeneration. Together, this work identifies a robust, renewable cell source for cone replacement by purified cell suspension transplantation

    The phenology of winter rye in Poland: an analysis of long-term experimental data

    Get PDF
    The study of the phenology of crops, although quite popular, has limitations, mainly because of frequent changes to crop varieties and management practices. Here, we present data on the phenology and yield of winter rye in western Poland collected between 1957 and 2012 from a long-term field experiment. Data were examined for trends through time and compared to climatological factors using regression analysis. Both annual air temperature and precipitation increased during the study period, equivalent to 2 °C and 186 mm, respectively, over the 52-year period for which met data were available. We detected significant delays in sowing date and recently in emergence, but significant advances were apparent in full flowering date equivalent to 4 days/decade. Yield and plant density experienced a step like change in 1986; yield increasing by ca. 70 % and plant density increasing by ca. 50 %, almost coinciding with a similar change in annual mean temperature, but most likely caused by a changed seed rate and use of herbicides. Future climate change is expected to have a greater impact on this crop, but farmers may be able to adapt to these changes by modifying water regimes, using new machinery and sowing new rye varieties

    Recapitulation of Human Retinal Development from Human Pluripotent Stem Cells Generates Transplantable Populations of Cone Photoreceptors

    Get PDF
    Transplantation of rod photoreceptors, derived either from neonatal retinae or pluripotent stem cells (PSCs), can restore rod-mediated visual function in murine models of inherited blindness. However, humans depend more upon cone photoreceptors that are required for daylight, color, and high-acuity vision. Indeed, macular retinopathies involving loss of cones are leading causes of blindness. An essential step for developing stem cell-based therapies for maculopathies is the ability to generate transplantable human cones from renewable sources. Here, we report a modified 2D/3D protocol for generating hPSC-derived neural retinal vesicles with well-formed ONL-like structures containing cones and rods bearing inner segments and connecting cilia, nascent outer segments, and presynaptic structures. This differentiation system recapitulates human photoreceptor development, allowing the isolation and transplantation of a pure population of stage-matched cones. Purified human long/medium cones survive and become incorporated within the adult mouse retina, supporting the potential of photoreceptor transplantation for treating retinal degeneration
    corecore