547 research outputs found
Time evolution of the Partridge-Barton Model
The time evolution of the Partridge-Barton model in the presence of the
pleiotropic constraint and deleterious somatic mutations is exactly solved for
arbitrary fecundity in the context of a matricial formalism. Analytical
expressions for the time dependence of the mean survival probabilities are
derived. Using the fact that the asymptotic behavior for large time is
controlled by the largest matrix eigenvalue, we obtain the steady state values
for the mean survival probabilities and the Malthusian growth exponent. The
mean age of the population exhibits a power law decayment. Some Monte
Carlo simulations were also performed and they corroborated our theoretical
results.Comment: 10 pages, Latex, 1 postscript figure, published in Phys. Rev. E 61,
5664 (2000
Interferometric imaging with the 32 element Murchison Wide-field Array
The Murchison Wide-field Array (MWA) is a low frequency radio telescope,
currently under construction, intended to search for the spectral signature of
the epoch of re-ionisation (EOR) and to probe the structure of the solar
corona. Sited in Western Australia, the full MWA will comprise 8192 dipoles
grouped into 512 tiles, and be capable of imaging the sky south of 40 degree
declination, from 80 MHz to 300 MHz with an instantaneous field of view that is
tens of degrees wide and a resolution of a few arcminutes. A 32-station
prototype of the MWA has been recently commissioned and a set of observations
taken that exercise the whole acquisition and processing pipeline. We present
Stokes I, Q, and U images from two ~4 hour integrations of a field 20 degrees
wide centered on Pictoris A. These images demonstrate the capacity and
stability of a real-time calibration and imaging technique employing the
weighted addition of warped snapshots to counter extreme wide field imaging
distortions.Comment: Accepted for publication in PASP. This is the draft before journal
typesetting corrections and proofs so does contain formatting and journal
style errors, also has with lower quality figures for space requirement
Virus Replication as a Phenotypic Version of Polynucleotide Evolution
In this paper we revisit and adapt to viral evolution an approach based on
the theory of branching process advanced by Demetrius, Schuster and Sigmund
("Polynucleotide evolution and branching processes", Bull. Math. Biol. 46
(1985) 239-262), in their study of polynucleotide evolution. By taking into
account beneficial effects we obtain a non-trivial multivariate generalization
of their single-type branching process model. Perturbative techniques allows us
to obtain analytical asymptotic expressions for the main global parameters of
the model which lead to the following rigorous results: (i) a new criterion for
"no sure extinction", (ii) a generalization and proof, for this particular
class of models, of the lethal mutagenesis criterion proposed by Bull,
Sanju\'an and Wilke ("Theory of lethal mutagenesis for viruses", J. Virology 18
(2007) 2930-2939), (iii) a new proposal for the notion of relaxation time with
a quantitative prescription for its evaluation, (iv) the quantitative
description of the evolution of the expected values in in four distinct
"stages": extinction threshold, lethal mutagenesis, stationary "equilibrium"
and transient. Finally, based on these quantitative results we are able to draw
some qualitative conclusions.Comment: 23 pages, 1 figure, 2 tables. arXiv admin note: substantial text
overlap with arXiv:1110.336
The Murchison Widefield Array
It is shown that the excellent Murchison Radio-astronomy Observatory site
allows the Murchison Widefield Array to employ a simple RFI blanking scheme and
still calibrate visibilities and form images in the FM radio band. The
techniques described are running autonomously in our calibration and imaging
software, which is currently being used to process an FM-band survey of the
entire southern sky.Comment: Accepted for publication in Proceedings of Science [PoS(RFI2010)016].
6 pages and 3 figures. Presented at RFI2010, the Third Workshop on RFI
Mitigation in Radio Astronomy, 29-31 March 2010, Groningen, The Netherland
The Heumann-Hotzel model for aging revisited
Since its proposition in 1995, the Heumann-Hotzel model has remained as an
obscure model of biological aging. The main arguments used against it were its
apparent inability to describe populations with many age intervals and its
failure to prevent a population extinction when only deleterious mutations are
present. We find that with a simple and minor change in the model these
difficulties can be surmounted. Our numerical simulations show a plethora of
interesting features: the catastrophic senescence, the Gompertz law and that
postponing the reproduction increases the survival probability, as has already
been experimentally confirmed for the Drosophila fly.Comment: 11 pages, 5 figures, to be published in Phys. Rev.
J Theor Biol
One of the most important antioxidant enzymes is superoxide dismutase (SOD), which catalyses the dismutation of superoxide radicals to hydrogen peroxide. The enzyme plays an important role in diseases like trisomy 21 and also in theories of the mechanisms of aging. But instead of being beneficial, intensified oxidative stress is associated with the increased expression of SOD and also studies on bacteria and transgenic animals show that high levels of SOD actually lead to increased lipid peroxidation and hypersensitivity to oxidative stress. Using mathematical models we investigate the question how overexpression of SOD can lead to increased oxidative stress, although it is an antioxidant enzyme. We consider the following possibilities that have been proposed in the literature: (i) Reaction of H2O2 with CuZnSOD leading to hydroxyl radical formation. (ii) Superoxide radicals might reduce membrane damage by acting as radical chain breaker. (iii) While detoxifying superoxide radicals SOD cycles between a reduced and oxidized state. At low superoxide levels the intermediates might interact with other redox partners and increase the superoxide reductase (SOR) activity of SOD. This short-circuiting of the SOD cycle could lead to an increased hydrogen peroxide production. We find that only one of the proposed mechanisms is under certain circumstances able to explain the increased oxidative stress caused by SOD. But furthermore we identified an additional mechanism that is of more general nature and might be a common basis for the experimental findings. We call it the alternative pathway mechanism
The Murchison Widefield Array: Design Overview
The Murchison Widefield Array (MWA) is a dipole-based aperture array
synthesis telescope designed to operate in the 80-300 MHz frequency range. It
is capable of a wide range of science investigations, but is initially focused
on three key science projects. These are detection and characterization of
3-dimensional brightness temperature fluctuations in the 21cm line of neutral
hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10,
solar imaging and remote sensing of the inner heliosphere via propagation
effects on signals from distant background sources,and high-sensitivity
exploration of the variable radio sky. The array design features 8192
dual-polarization broad-band active dipoles, arranged into 512 tiles comprising
16 dipoles each. The tiles are quasi-randomly distributed over an aperture
1.5km in diameter, with a small number of outliers extending to 3km. All
tile-tile baselines are correlated in custom FPGA-based hardware, yielding a
Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point
spread function (PSF) quality. The correlated data are calibrated in real time
using novel position-dependent self-calibration algorithms. The array is
located in the Murchison region of outback Western Australia. This region is
characterized by extremely low population density and a superbly radio-quiet
environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings
of the IEE
Measurement of the Associated Production Cross Section in Collisions at TeV
We present the first measurement of associated direct photon + muon
production in hadronic collisions, from a sample of 1.8 TeV
collisions recorded with the Collider Detector at Fermilab. Quantum
chromodynamics (QCD) predicts that these events are primarily from the Compton
scattering process , with the final state charm quark producing
a muon. Hence this measurement is sensitive to the charm quark content of the
proton. The measured cross section of is compared to a
leading-order QCD parton shower model as well as a next-to-leading-order QCD
calculation.Comment: 12 pages, 4 figures Added more detailed description of muon
background estimat
Inclusive jet cross section in collisions at TeV
The inclusive jet differential cross section has been measured for jet
transverse energies, , from 15 to 440 GeV, in the pseudorapidity region
0.10.7. The results are based on 19.5 pb of data
collected by the CDF collaboration at the Fermilab Tevatron collider. The data
are compared with QCD predictions for various sets of parton distribution
functions. The cross section for jets with GeV is significantly
higher than current predictions based on O() perturbative QCD
calculations. Various possible explanations for the high- excess are
discussed.Comment: 8 pages with 2 eps uu-encoded figures Submitted to Physical Review
Letter
Earthworm Lumbricus rubellus MT-2:Metal binding and protein folding of a true cadmium-MT
Earthworms express, as most animals, metallothioneins (MTs)-small, cysteine-rich proteins that bind d10 metal ions (Zn(II), Cd(II), or Cu(I)) in clusters. Three MT homologues are known for Lumbricus rubellus, the common red earthworm, one of which, wMT-2, is strongly induced by exposure of worms to cadmium. This study concerns composition, metal binding affinity and metal-dependent protein folding of wMT-2 expressed recombinantly and purified in the presence of Cd(II) and Zn(II). Crucially, whilst a single Cd7wMT-2 species was isolated from wMT-2-expressing E. coli cultures supplemented with Cd(II), expressions in the presence of Zn(II) yielded mixtures. The average affinities of wMT-2 determined for either Cd(II) or Zn(II) are both within normal ranges for MTs; hence, differential behaviour cannot be explained on the basis of overall affinity. Therefore, the protein folding properties of Cd- and Zn-wMT-2 were compared by3H NMR spectroscopy. This comparison revealed that the protein fold is better defined in the presence of cadmium than in the presence of zinc. These differences in folding and dynamics may be at the root of the differential behaviour of the cadmium- and zinc-bound protein in vitro, and may ultimately also help in distinguishing zinc and cadmium in the earthworm in vivo.</p
- …
