14 research outputs found

    Addition of vardenafil into storage solution protects the endothelium in a hypoxia-reoxygenation model

    Get PDF
    OBJECTIVE: Based upon the well known protective effect of intracellular cyclic guanosine monophosphate (cGMP) accumulation, we tested the hypothesis that storage solution enriched with optimal concentration of the phosphodiestherase-5 inhibitor vardenafil could provide better protection of vascular grafts against reperfusion injury after long-term cold ischaemic storage. METHODS: Isolated thoracic aorta obtained from rats underwent 24-h cold ischaemic preservation in physiological saline or vardenafil (10(-11) M)-supplemented saline solution. Reperfusion injury was simulated by hypochlorite (200 muM) exposure for 30 minutes. Endothelium-dependent vasorelaxation was assessed, and histopathological and molecular-biological examination of the aortic tissue were performed. RESULTS: Compared with the control group, the saline group showed significantly attenuated endothelium-dependent maximal relaxation (Rmax) to acetylcholine after hypoxia-reoxygenation, which was significantly improved by vardenafil supplementation (Rmax control: 98 +/- 1%; saline: 48 +/- 6%; vardenafil: 75 +/- 4%; p < .05). Vardenafil treatment significantly reduced DNA strand breaks (control: 10.6 +/- 6.2%; saline: 72.5 +/- 4.0%; vardenafil: 14.2 +/- 5.2%; p < .05) and increased cGMP score in the aortic wall (control: 8.2 +/- 0.6; saline: 4.5 +/- 0.3; vardenafil: 6.7 +/- 0.6; p < .05). CONCLUSIONS: Our results support the view that impairment of intracellular cGMP signalling plays a role in the pathogenesis of the endothelial dysfunction induced by cold storage warm reperfusion, which can be effectively reversed by pharmacological phosphodiesterase-5 inhibition

    Voluntary exercise does not increase gastrointestinal motility but increases spatial memory, intestinal eNOS, Akt levels, and Bifidobacteria abundance in the microbiome

    Get PDF
    The interaction between the gut and brain is a great puzzle since it is mediated by very complex mechanisms. Therefore, the possible interactions of the brain–exercise–intestine–microbiome axis were investigated in a control (C, N = 6) and voluntarily exercised (VE, N = 8) middle-aged rats. The endurance capacity was assessed by VO2max on the treadmill, spatial memory by the Morris maze test, gastrointestinal motility by EMG, the microbiome by 16S RNA gene amplicon sequencing, caveolae by electron microscopy, and biochemical assays were used to measure protein levels and production of reactive oxygen species (ROS). Eight weeks of voluntary running increased VO2max, and spatial memory was assessed by the Morris maze test but did not significantly change the motility of the gastrointestinal tract or production of ROS in the intestine. The protein kinase B (Akt) and endothelial nitric oxide synthase (eNOS) protein levels significantly increased in the intestine, while peroxisome proliferator–activated receptor gamma coactivator 1 alpha (PGC-1α), mitochondrial transcription factor A (TFAM), nuclear respiratory factor 1 (NFR1), SIRT1, SIRT3, nicotinamide phosphoribosyl transferase (NAMPT), and nuclear factor κB (NF-κB) did not change. On the other hand, voluntary exercise increased the number of caveolae in the smooth muscles of the intestine and relative abundance of Bifidobacteria in the microbiome, which correlated with the Akt levels in the intestine. Voluntary exercise has systemic effects and the relationship between intestinal Akt and the microbiome of the gastrointestinal tract could be an important adaptive response

    Productive Parvovirus B19 Infection of Primary Human Erythroid Progenitor Cells at Hypoxia Is Regulated by STAT5A and MEK Signaling but not HIFα

    Get PDF
    Human parvovirus B19 (B19V) causes a variety of human diseases. Disease outcomes of bone marrow failure in patients with high turnover of red blood cells and immunocompromised conditions, and fetal hydrops in pregnant women are resulted from the targeting and destruction of specifically erythroid progenitors of the human bone marrow by B19V. Although the ex vivo expanded erythroid progenitor cells recently used for studies of B19V infection are highly permissive, they produce progeny viruses inefficiently. In the current study, we aimed to identify the mechanism that underlies productive B19V infection of erythroid progenitor cells cultured in a physiologically relevant environment. Here, we demonstrate an effective reverse genetic system of B19V, and that B19V infection of ex vivo expanded erythroid progenitor cells at 1% O2 (hypoxia) produces progeny viruses continuously and efficiently at a level of approximately 10 times higher than that seen in the context of normoxia. With regard to mechanism, we show that hypoxia promotes replication of the B19V genome within the nucleus, and that this is independent of the canonical PHD/HIFα pathway, but dependent on STAT5A and MEK/ERK signaling. We further show that simultaneous upregulation of STAT5A signaling and down-regulation of MEK/ERK signaling boosts the level of B19V infection in erythroid progenitor cells under normoxia to that in cells under hypoxia. We conclude that B19V infection of ex vivo expanded erythroid progenitor cells at hypoxia closely mimics native infection of erythroid progenitors in human bone marrow, maintains erythroid progenitors at a stage conducive to efficient production of progeny viruses, and is regulated by the STAT5A and MEK/ERK pathways

    The effects of long-term lactate and high-intensity interval training (HIIT) on brain neuroplasticity of aged mice

    No full text
    Extensive research has confirmed numerous advantages of exercise for promoting brain health. More recent studies have proposed the potential benefits of lactate, the by-product of exercise, in various aspects of brain function and disorders. However, there remains a gap in understanding the effects of lactate dosage and its impact on aged rodents. The present study first examined the long-term effects of three different doses of lactate intervention (2000 mg/kg, 1000 mg/kg, and 500 mg/kg) and high-intensity interval training (HIIT) on aging mice (20–22 months) as the 1st experiment. Subsequently, in the 2nd experiment, we investigated the long-term effects of 500 mg/kg lactate intervention and HIIT on brain neuroplasticity in aged mice (25–27 months).The results of the 1st experiment demonstrated that both HIIT and different doses of lactate intervention (500 mg/kg and 2000 mg/kg) positively impacted the neuroplasticity biomarker VEGF in the hippocampus of aging mice. Subsequently, the 2nd experiment revealed that long-term HIIT significantly improved the performance of mice in open-field, novel object recognition, and passive avoidance tests. However, lactate intervention did not significantly affect these behavioral tests. Moreover, compared to the control group, both HIIT and lactate intervention positively influenced the angiogenesis signaling pathway (p/t-AKT/ENOS/VEGF), mitochondrial biomarker (SDHA), and metabolic protein (p/t-CREB, p/t-HSL, and LDH) in the hippocampus of aged mice. Notably, only lactate intervention significantly elevated the BDNF (PGC-1α, SIRT1, and BDNF) signaling pathway and metabolic content (lactate and pyruvate). In the end, long-term HIIT and lactate intervention failed to change the protein expression of p/t-MTOR, iNOS, nNOS, HIF-1α, SYNAPSIN, SIRT3, NAMPT, CS, FNDC5 and Pan Lactic aid-Lysine in the hippocampus of aged mice.In summary, the present study proved that long-term HIIT and lactate treatment have positive effects on the brain functions of aged mice, suggesting the potential usage of lactate as a therapeutic strategy in neurodegenerative diseases in the elderly population

    Activating HSP72 in rodent skeletal muscle increases mitochondrial number and oxidative capacity and decreases insulin resistance

    Get PDF
    Induction of heat shock protein (HSP)72 protects against obesity-induced insulin resistance, but the underlying mechanisms are unknown. Here, we show that HSP72 plays a pivotal role in increasing skeletal muscle mitochondrial number and oxidative metabolism. Mice overexpressing HSP72 in skeletal muscle (HSP72Tg) and control wild-type (WT) mice were fed either a chow or high-fat diet (HFD). Despite a similar energy intake when HSP72Tg mice were compared with WT mice, the HFD increased body weight, intramuscular lipid accumulation (triacylglycerol and diacylglycerol but not ceramide), and severe glucose intolerance in WT mice alone. Whole-body VO2, fatty acid oxidation, and endurance running capacity were markedly increased in HSP72Tg mice. Moreover, HSP72Tg mice exhibited an increase in mitochondrial number. In addition, the HSP72 coinducer BGP-15, currently in human clinical trials for type 2 diabetes, also increased mitochondrial number and insulin sensitivity in a rat model of type 2 diabetes. Together, these data identify a novel role for activation of HSP72 in skeletal muscle. Thus, the increased oxidative metabolism associated with activation of HSP72 has potential clinical implications not only for type 2 diabetes but also for other disorders where mitochondrial function is compromised
    corecore