48 research outputs found

    Effects of an Environmental Education Course on Consensus Estimates for Proenvironmental Intentions

    No full text
    An environmental education intervention in a university conservation-related course was designed to decrease students' errors in consensus estimates for proenvironmental intentions, that is, their errors in guessing their classmates' proenvironmental intentions. Before and after the course, the authors measured two intentions regarding willingness to contribute money and volunteer work for environmental causes. The false consensus effect, whereby contributors provide significantly higher consensus estimates compared with noncontributors, was displayed both before and after the course. Specifically, students intending to contribute believed most (51%-54%) of their classmates would contribute, and students not intending to contribute believed fewer (28%-35%) of their classmates would contribute. Accuracy in estimating consensus increased significantly after the course. Errors in consensus estimates were significant predictors of behavioral intentions. The study showed that the theoretical and methodological background of environmental education interventions can be enriched by incorporating consensus estimates for proenvironmental intentions in assessment procedures

    Tracking a serial killer: Integrating phylogenetic relationships, epidemiology, and geography for two invasive meningococcal disease outbreaks.

    No full text
    BackgroundWhile overall rates of meningococcal disease have been declining in the United States for the past several decades, New York City (NYC) has experienced two serogroup C meningococcal disease outbreaks in 2005-2006 and in 2010-2013. The outbreaks were centered within drug use and sexual networks, were difficult to control, and required vaccine campaigns.MethodsWhole Genome Sequencing (WGS) was used to analyze preserved meningococcal isolates collected before and during the two outbreaks. We integrated and analyzed epidemiologic, geographic, and genomic data to better understand transmission networks among patients. Betweenness centrality was used as a metric to understand the most important geographic nodes in the transmission networks. Comparative genomics was used to identify genes associated with the outbreaks.ResultsNeisseria meningitidis serogroup C (ST11/ET-37) was responsible for both outbreaks with each outbreak having distinct phylogenetic clusters. WGS did identify some misclassifications of isolates that were more distant from the outbreak strains, as well as those that should have been included based on high genomic similarity. Genomes for the second outbreak were more similar than the first and no polymorphism was found to either be unique or specific to either outbreak lineage. Betweenness centrality as applied to transmission networks based on phylogenetic analysis demonstrated that the outbreaks were transmitted within focal communities in NYC with few transmission events to other locations.ConclusionsNeisseria meningitidis is an ever changing pathogen and comparative genomic analyses can help elucidate how it spreads geographically to facilitate targeted interventions to interrupt transmission

    Use of Unamplified RNA/cDNA–Hybrid Nanopore Sequencing for Rapid Detection and Characterization of RNA Viruses

    No full text
    Nanopore sequencing, a novel genomics technology, has potential applications for routine biosurveillance, clinical diagnosis, and outbreak investigation of virus infections. Using rapid sequencing of unamplified RNA/cDNA hybrids, we identified Venezuelan equine encephalitis virus and Ebola virus in 3 hours from sample receipt to data acquisition, demonstrating a fieldable technique for RNA virus characterization
    corecore