39 research outputs found

    Hundredfold Enhancement of Light Emission via Defect Control in Monolayer Transition-Metal Dichalcogenides

    Get PDF
    Two dimensional (2D) transition-metal dichalcogenide (TMD) based semiconductors have generated intense recent interest due to their novel optical and electronic properties, and potential for applications. In this work, we characterize the atomic and electronic nature of intrinsic point defects found in single crystals of these materials synthesized by two different methods - chemical vapor transport and self-flux growth. Using a combination of scanning tunneling microscopy (STM) and scanning transmission electron microscopy (STEM), we show that the two major intrinsic defects in these materials are metal vacancies and chalcogen antisites. We show that by control of the synthetic conditions, we can reduce the defect concentration from above 1013/cm210^{13} /cm^2 to below 1011/cm210^{11} /cm^2. Because these point defects act as centers for non-radiative recombination of excitons, this improvement in material quality leads to a hundred-fold increase in the radiative recombination efficiency

    Magnetism in Semiconducting Molybdenum Dichalcogenides

    Get PDF
    Transition metal dichalcogenides (TMDs) are interesting for understanding fundamental physics of two-dimensional materials (2D) as well as for many emerging technologies, including spin electronics. Here, we report the discovery of long-range magnetic order below TM = 40 K and 100 K in bulk semiconducting TMDs 2H-MoTe2 and 2H-MoSe2, respectively, by means of muon spin-rotation (muSR), scanning tunneling microscopy (STM), as well as density functional theory (DFT) calculations. The muon spin rotation measurements show the presence of a large and homogeneous internal magnetic fields at low temperatures in both compounds indicative of long-range magnetic order. DFT calculations show that this magnetism is promoted by the presence of defects in the crystal. The STM measurements show that the vast majority of defects in these materials are metal vacancies and chalcogen-metal antisites which are randomly distributed in the lattice at the sub-percent level. DFT indicates that the antisite defects are magnetic with a magnetic moment in the range of 0.9-2.8 mu_B. Further, we find that the magnetic order stabilized in 2H-MoTe2 and 2H-MoSe2 is highly sensitive to hydrostatic pressure. These observations establish 2H-MoTe2 and 2H-MoSe2 as a new class of magnetic semiconductors and opens a path to studying the interplay of 2D physics and magnetism in these interesting semiconductors.Comment: 13 pages, 10 Figure

    Moiréless correlations in ABCA graphene

    Get PDF
    Atomically thin van der Waals materials stacked with an interlayer twist have proven to be an excellent platform toward achieving gate-tunable correlated phenomena linked to the formation of flat electronic bands. In this work we demonstrate the formation of emergent correlated phases in multilayer rhombohedral graphene––a simple material that also exhibits a flat electronic band edge but without the need of having a moiré superlattice induced by twisted van der Waals layers. We show that two layers of bilayer graphene that are twisted by an arbitrary tiny angle host large (micrometer-scale) regions of uniform rhombohedral four-layer (ABCA) graphene that can be independently studied. Scanning tunneling spectroscopy reveals that ABCA graphene hosts an unprecedentedly sharp van Hove singularity of 3–5-meV half-width. We demonstrate that when this van Hove singularity straddles the Fermi level, a correlated many-body gap emerges with peak-to-peak value of 9.5 meV at charge neutrality. Mean-field theoretical calculations for model with short-ranged interactions indicate that two primary candidates for the appearance of this broken symmetry state are a charge-transfer excitonic insulator and a ferrimagnet. Finally, we show that ABCA graphene hosts surface topological helical edge states at natural interfaces with ABAB graphene which can be turned on and off with gate voltage, implying that small-angle twisted double-bilayer graphene is an ideal programmable topological quantum material

    Moiré metrology of energy landscapes in van der Waals heterostructures

    Get PDF
    The emerging field of twistronics, which harnesses the twist angle between two-dimensional materials, represents a promising route for the design of quantum materials, as the twist-angle-induced superlattices offer means to control topology and strong correlations. At the small twist limit, and particularly under strain, as atomic relaxation prevails, the emergent moiré superlattice encodes elusive insights into the local interlayer interaction. Here we introduce moiré metrology as a combined experiment-theory framework to probe the stacking energy landscape of bilayer structures at the 0.1 meV/atom scale, outperforming the gold-standard of quantum chemistry. Through studying the shapes of moiré domains with numerous nano-imaging techniques, and correlating with multi-scale modelling, we assess and refine first-principle models for the interlayer interaction. We document the prowess of moiré metrology for three representative twisted systems: bilayer graphene, double bilayer graphene and H-stacked MoSe2/WSe2. Moiré metrology establishes sought after experimental benchmarks for interlayer interaction, thus enabling accurate modelling of twisted multilayers

    Imaging interfacial electrical transport in graphene-MoS2 heterostructures with electron-beam-induced-currents.

    No full text
    Heterostructure devices with specific and extraordinary properties can be fabricated by stacking two-dimensional crystals. Cleanliness at the inter-crystal interfaces within a heterostructure is crucial for maximizing device performance. However, because these interfaces are buried, characterizing their impact on device function is challenging. Here, we show that electron-beam induced current (EBIC) mapping can be used to image interfacial contamination and to characterize the quality of buried heterostructure interfaces with nanometer-scale spatial resolution. We applied EBIC and photocurrent imaging to map photo-sensitive graphene-MoS2 heterostructures. The EBIC maps, together with concurrently acquired scanning transmission electron microscopy images, reveal how a device's photocurrent collection efficiency is adversely affected by nanoscale debris invisible to optical-resolution photocurrent mapping
    corecore