27,922 research outputs found

    Foreword

    Get PDF

    New phenomena in the standard no-scale supergravity model

    Get PDF
    We revisit the no-scale mechanism in the context of the simplest no-scale supergravity extension of the Standard Model. This model has the usual five-dimensional parameter space plus an additional parameter ξ3/2≡m3/2/m1/2\xi_{3/2}\equiv m_{3/2}/m_{1/2}. We show how predictions of the model may be extracted over the whole parameter space. A necessary condition for the potential to be stable is StrM4>0{\rm Str}{\cal M}^4>0, which is satisfied if \bf m_{3/2}\lsim2 m_{\tilde q}. Order of magnitude calculations reveal a no-lose theorem guaranteeing interesting and potentially observable new phenomena in the neutral scalar sector of the theory which would constitute a ``smoking gun'' of the no-scale mechanism. This new phenomenology is model-independent and divides into three scenarios, depending on the ratio of the weak scale to the vev at the minimum of the no-scale direction. We also calculate the residual vacuum energy at the unification scale (C0 m3/24C_0\, m^4_{3/2}), and find that in typical models one must require C0>10C_0>10. Such constraints should be important in the search for the correct string no-scale supergravity model. We also show how specific classes of string models fit within this framework.Comment: 11pages, LaTeX, 1 figure (included), CERN-TH.7433/9

    Aerodynamic Effect of Strakes on Two-Dimensional Tail Boom Models of the OH-58A and the OH-58D Helicopters

    Get PDF
    During hover and low speed flight, helicopters experience significant aerodynamic forces on the tail boom caused by the wake from the main and tail rotors and by crosswinds. These effects were simulated during a study conducted in the Langley 14 by 22 Foot Subsonic Tunnel on a 136 percent scaled 2-D tail boom model with cross sections representative of those on the U.S. Army OH-58A and the OH-58D helicopters. The effects of longitudinal strakes attached to the cross sections were studied. To obtain the aerodynamic forces acting on the cross sections, the flow incidence range on the scaled models was varied from -45 to 90 degrees and the models were tested through a dynamic pressure range of 5 to 15 psf. The results of the OH-58A and the OH-58D configurations show a significant improvement at conditions which represent right sideward flight by reducing the adverse aerodynamic side force when the strakes are installed. These data were used to calculate a change in tail rotor power for the full scale flight vehicle and indicated approx. a 5 to 6 percent average savings in right sideward flight for the critical velocity range of 0 to 30 knots. Increases in the tail boom normal force were noted due to the strakes. The results indicate a potential for reducing the directional control and tail rotor thrust required in the critical hover and right sideward flight speed range with a calculated minimum increase to main rotor power required and an overall net improvement in power of 0.5 percent for both the OH-58A and OH-58D

    Computer program to predict spacecraft window deformations and compute window induced angular deviations of light rays

    Get PDF
    Computer program for predicting spacecraft window deformations and computing window induced angular deviations of light ray

    Helicopter low-speed yaw control

    Get PDF
    A system for improving yaw control at low speeds consists of one strake placed on the upper portion of the fuselage facing the retreating rotor blade and another strake placed on the lower portion of the fuselage facing the advancing rotor blade. These strakes spoil the airflow on the helicopter tail boom during hover, low speed flight, and right or left sidewards flight so that less side thrust is required from the tail rotor

    Testing the binary hypothesis: pulsar timing constraints on supermassive black hole binary candidates

    Get PDF
    The advent of time domain astronomy is revolutionizing our understanding of the Universe. Programs such as the Catalina Real-time Transient Survey (CRTS) or the Palomar Transient Factory (PTF) surveyed millions of objects for several years, allowing variability studies on large statistical samples. The inspection of ≈\approx250k quasars in CRTS resulted in a catalogue of 111 potentially periodic sources, put forward as supermassive black hole binary (SMBHB) candidates. A similar investigation on PTF data yielded 33 candidates from a sample of ≈\approx35k quasars. Working under the SMBHB hypothesis, we compute the implied SMBHB merger rate and we use it to construct the expected gravitational wave background (GWB) at nano-Hz frequencies, probed by pulsar timing arrays (PTAs). After correcting for incompleteness and assuming virial mass estimates, we find that the GWB implied by the CRTS sample exceeds the current most stringent PTA upper limits by almost an order of magnitude. After further correcting for the implicit bias in virial mass measurements, the implied GWB drops significantly but is still in tension with the most stringent PTA upper limits. Similar results hold for the PTF sample. Bayesian model selection shows that the null hypothesis (whereby the candidates are false positives) is preferred over the binary hypothesis at about 2.3σ2.3\sigma and 3.6σ3.6\sigma for the CRTS and PTF samples respectively. Although not decisive, our analysis highlights the potential of PTAs as astrophysical probes of individual SMBHB candidates and indicates that the CRTS and PTF samples are likely contaminated by several false positives.Comment: 14 pages, 11 figures, 3 tables. Resubmitted to the Astrophysical Journal after some major revision of the results including a proper estimate of the intrinsic mass of the binary candidate
    • …
    corecore