12 research outputs found
PerSeVerE: persistency semantics for verification under ext4.
Although ubiquitous, modern filesystems have rather complex behaviours that are hardly understood by programmers and lead to severe software bugs such as data corruption. As a first step to ensure correctness of software performing file I/O, we formalize the semantics of the Linux ext4 filesystem, which we integrate with the weak memory consistency semantics of C/C++. We further develop an effective model checking approach for verifying programs that use the filesystem. In doing so, we discover and report bugs in commonly-used text editors such as vim, emacs and nano
The Leaky Semicolon
Program logics and semantics tell a pleasant story about sequential composition: when executing (S1;S2), we first execute S1 then S2. To improve performance, however, processors execute instructions out of order, and compilers reorder programs even more dramatically. By design, single-threaded systems cannot observe these reorderings; however, multiple-threaded systems can, making the story considerably less pleasant. A formal attempt to understand the resulting mess is known as a “relaxed memory model.” Prior models either fail to address sequential composition directly, or overly restrict processors and compilers, or permit nonsense thin-air behaviors which are unobservable in practice.
To support sequential composition while targeting modern hardware, we enrich the standard event-based approach with preconditions and families of predicate transformers. When calculating the meaning of (S1; S2), the predicate transformer applied to the precondition of an event e from S2 is chosen based on the set of events in S1 upon which e depends. We apply this approach to two existing memory models
A Bayesian decision support sequential model for severity of illness predictors and intensive care admissions in pneumonia.
BACKGROUND: Community-acquired pneumonia (CAP) is one of the leading causes of morbidity and mortality in the USA. Our objective was to assess the predictive value on critical illness and disposition of a sequential Bayesian Model that integrates Lactate and procalcitonin (PCT) for pneumonia. METHODS: Sensitivity and specificity of lactate and PCT attained from pooled meta-analysis data. Likelihood ratios calculated and inserted in Bayesian/ Fagan nomogram to calculate posttest probabilities. Bayesian Diagnostic Gains (BDG) were analyzed comparing pre and post-test probability. To assess the value of integrating both PCT and Lactate in Severity of Illness Prediction we built a model that combined CURB65 with PCT as the Pre-Test markers and later integrated the Lactate Likelihood Ratio Values to generate a combined CURB 65 + Procalcitonin + Lactate Sequential value. RESULTS: The BDG model integrated a CUBR65 Scores combined with Procalcitonin (LR+ and LR-) for Pre-Test Probability Intermediate and High with Lactate Positive Likelihood Ratios. This generated for the PCT LR+ Post-test Probability (POSITIVE TEST) Posterior probability: 93% (95% CI [91,96%]) and Post Test Probability (NEGATIVE TEST) of: 17% (95% CI [15-20%]) for the Intermediate subgroup and 97% for the high risk sub-group POSITIVE TEST: Post-Test probability:97% (95% CI [95,98%]) NEGATIVE TEST: Post-test probability: 33% (95% CI [31,36%]) . ANOVA analysis for CURB 65 (alone) vs CURB 65 and PCT (LR+) vs CURB 65 and PCT (LR+) and Lactate showed a statistically significant difference (P value = 0.013). CONCLUSIONS: The sequential combination of CURB 65 plus PCT with Lactate yielded statistically significant results, demonstrating a greater predictive value for severity of illness thus ICU level care