3,298 research outputs found
Codelivery of Genistein and miRNA-29b to A549 Cells Using Aptamer-Hybrid Nanoparticle Bioconjugates.
This study aimed to evaluate the anti-cancer effect of a combination therapy of miRNA-29b and genistein loaded in mucin-1 (MUC 1)-aptamer functionalized hybrid nanoparticles in non-small cell lung cancer (NSCLC) A549 cell line. Genistein-miRNA-29b-loaded hybrid nanoparticles (GMLHN) was prepared and characterized. Particle size and zeta potential were measured using photon correlation spectroscopy (PCS). Encapsulation efficiency and loading efficiency were determined using HPLC. Preferential internalization of MUC 1-aptamer functionalized GMLHN by A549 cells was evaluated and compared to normal MRC-5 cells. The ability of GMLHN to downregulate targeted oncoproteins Phosphorylated protein kinase, strain AK, Thymoma (Phosphorylated protein kinase B) (pAKT), Phosphorylated phosphoinositide 3-kinase (p-PI3K), DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B) and Myeloid Cell Leukemia Sequence 1 (MCL 1) was evaluated using western blot, while antiproliferative effect and ability to initiate apoptosis was also assessed in A549 cells. MUC 1-aptamer functionalized GMLHN nanoparticles were prepared. These nanoparticles were preferentially internalized by A549 cells but less so, in MRC-5 cells. pAKT, p-PI3K, DNMT3B and MCL 1 were efficiently downregulated by these nanoparticles without affecting the levels of AKT and PI3K in A549 cells. GMLHN demonstrated a superior antiproliferative effect compared to individual genistein and miRNA-29b-loaded nanoparticles. Results generated were able to demonstrate that genistein-miRNA-29b-loaded hybrid nanoparticles (GMLHN) could be a potential treatment modality for NSCLC because of the ability of the payloads to attack multiple targets
Randomized Assignment of Jobs to Servers in Heterogeneous Clusters of Shared Servers for Low Delay
We consider the job assignment problem in a multi-server system consisting of
parallel processor sharing servers, categorized into ()
different types according to their processing capacity or speed. Jobs of random
sizes arrive at the system according to a Poisson process with rate . Upon each arrival, a small number of servers from each type is
sampled uniformly at random. The job is then assigned to one of the sampled
servers based on a selection rule. We propose two schemes, each corresponding
to a specific selection rule that aims at reducing the mean sojourn time of
jobs in the system.
We first show that both methods achieve the maximal stability region. We then
analyze the system operating under the proposed schemes as which
corresponds to the mean field. Our results show that asymptotic independence
among servers holds even when is finite and exchangeability holds only
within servers of the same type. We further establish the existence and
uniqueness of stationary solution of the mean field and show that the tail
distribution of server occupancy decays doubly exponentially for each server
type. When the estimates of arrival rates are not available, the proposed
schemes offer simpler alternatives to achieving lower mean sojourn time of
jobs, as shown by our numerical studies
Downlink Performance of Superimposed Pilots in Massive MIMO systems
In this paper, we investigate the downlink throughput performance of a
massive multiple-input multiple-output (MIMO) system that employs superimposed
pilots for channel estimation. The component of downlink (DL) interference that
results from transmitting data alongside pilots in the uplink (UL) is shown to
decrease at a rate proportional to the square root of the number of antennas at
the BS. The normalized mean-squared error (NMSE) of the channel estimate is
compared with the Bayesian Cram\'{e}r-Rao lower bound that is derived for the
system, and the former is also shown to diminish with increasing number of
antennas at the base station (BS). Furthermore, we show that staggered pilots
are a particular case of superimposed pilots and offer the downlink throughput
of superimposed pilots while retaining the UL spectral and energy efficiency of
regular pilots. We also extend the framework for designing a hybrid system,
consisting of users that transmit either regular or superimposed pilots, to
minimize both the UL and DL interference. The improved NMSE and DL rates of the
channel estimator based on superimposed pilots are demonstrated by means of
simulations.Comment: 28 single-column pages, 6 figures, 1 table, Submitted to IEEE Trans.
Wireless Commun. in Aug 2017. Revised Submission in Feb. 201
Joint measurability, steering and entropic uncertainty
The notion of incompatibility of measurements in quantum theory is in stark
contrast with the corresponding classical perspective, where all physical
observables are jointly measurable. It is of interest to examine if the results
of two or more measurements in the quantum scenario can be perceived from a
classical point of view or they still exhibit non-classical features. Clearly,
commuting observables can be measured jointly using projective measurements and
their statistical outcomes can be discerned classically. However, such simple
minded association of compatibility of measurements with commutativity turns
out to be limited in an extended framework, where the usual notion of sharp
projective valued measurements of self adjoint observables gets broadened to
include unsharp measurements of generalized observables constituting positive
operator valued measures (POVM). There is a surge of research activity recently
towards gaining new physical insights on the emergence of classical behavior
via joint measurability of unsharp observables. Here, we explore the entropic
uncertainty relation for a pair of discrete observables (of Alice's system)
when an entangled quantum memory of Bob is restricted to record outcomes of
jointly measurable POVMs only. Within the joint measurability regime, the sum
of entropies associated with Alice's measurement outcomes - conditioned by the
results registered at Bob's end - are constrained to obey an entropic steering
inequality. In this case, Bob's non-steerability reflects itself as his
inability in predicting the outcomes of Alice's pair of non-commuting
observables with better precision, even when they share an entangled state. As
a further consequence, the quantum advantage envisaged for the construction of
security proofs in key distribution is lost, when Bob's measurements are
restricted to the joint measurability regime.Comment: 5 pages, RevTeX, 1 pdf figure, Comments welcom
Sangam Age War Traditions and the Novel Velpari
War has been a part of the lives of the people of the Sangam age. They did not take war merely as a matter of speech, but they treated it in accordance with the rules. This article compares the war with the war traditions of the Sangam age, the war traditions mentioned by Tholkappiyar. And with the novel Velpari, written by S. Venkatesan. If a king wants to wage war against another country, he can wage war only according to the rules. First of all, through spies, they will know the condition of the enemy country and want to capture the wealth of the country, that is, cattle-lifting. Then they will wage war in order to rescue the cattle. The literature highlights the traditions of war, such as the king who won after the end of the war, wearing the flower (albizia lebbeck/woman's tongue). Therefore, although there are innumerable war traditions in the Sangam age, only espionage, cattle-lifting, declaration of war, and flowering have been examined in the article. They have also been examined in terms of comparative criticism and descriptive criticism
Allocation Problems in Ride-Sharing Platforms: Online Matching with Offline Reusable Resources
Bipartite matching markets pair agents on one side of a market with agents,
items, or contracts on the opposing side. Prior work addresses online bipartite
matching markets, where agents arrive over time and are dynamically matched to
a known set of disposable resources. In this paper, we propose a new model,
Online Matching with (offline) Reusable Resources under Known Adversarial
Distributions (OM-RR-KAD), in which resources on the offline side are reusable
instead of disposable; that is, once matched, resources become available again
at some point in the future. We show that our model is tractable by presenting
an LP-based adaptive algorithm that achieves an online competitive ratio of 1/2
- eps for any given eps greater than 0. We also show that no non-adaptive
algorithm can achieve a ratio of 1/2 + o(1) based on the same benchmark LP.
Through a data-driven analysis on a massive openly-available dataset, we show
our model is robust enough to capture the application of taxi dispatching
services and ride-sharing systems. We also present heuristics that perform well
in practice.Comment: To appear in AAAI 201
- …