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RANDOMIZED ASSIGNMENT OF JOBS TO SERVERS IN
HETEROGENEOUS CLUSTERS OF SHARED SERVERS

FOR LOW DELAY

By Arpan Mukhopadhyay, A. Karthik, and Ravi R. Mazumdar

University of Waterloo

We consider the problem of assignning jobs to servers in a multi-
server system consisting of N parallel processor sharing servers, cat-
egorized into M (� N) different types according to their processing
capacities or speeds. Jobs of random sizes arrive at the system ac-
cording to a Poisson process with rate Nλ. Upon each arrival, some
servers of each type are sampled uniformly at random. The job is
then assigned to one of the sampled servers based on their states. We
propose two schemes, which differ in the metric for choosing the des-
tination server for each arriving job. Our aim is to reduce the mean
sojourn time of the jobs in the system.

It is shown that the proposed schemes achieve the maximal sta-
bility region, without requiring the knowledge of the system param-
eters. The performance of the system operating under the proposed
schemes is analyzed in the limit as N → ∞. This gives rise to a mean
field limit. The mean field is shown to have a unique, globally asymp-
totically stable equilibrium point which approximates the stationary
distribution of load at each server. Asymptotic independence among
the servers is established using a notion of intra-type exchangeability
which generalizes the usual notion of exchangeability. It is further
shown that the tail distribution of server occupancies decays doubly
exponentially for each server type. Numerical evidence shows that
at high load the proposed schemes perform at least as well as other
schemes that require more knowledge of the system parameters.

1. Introduction. Consider a stream of jobs arriving at a multi-server
system consisting of a large number of parallel processor sharing servers.
The servers are categorized into different types or clusters according to their
processing capabilities. Each job, upon arrival, is assigned to a server where
it completes its service and leaves the system. The objective is to design job
assignment schemes that reduce the average sojourn, or response, time of
jobs in the system.
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1.1. Motivation. The problem of job assignment is central in multi-server
resource sharing systems that process delay sensitive web requests. Exam-
ples include data centers and web server farms running applications such as
online search, social networking etc. In these systems, a small increase in
the average response time of requests may cause significant loss of revenue
and users [21]. Therefore, it is critical to reduce the average response time
of jobs in such systems.

Reduction in the average response time can be achieved by assigning new
arrivals to less congested servers [25, 10, 26] in the system. However, in sys-
tems, where the number of servers is large, obtaining state information of
all the servers may incur significant overhead and delay. For such systems,
randomized job assignment schemes, in which each assignment decision is
made based on comparing the states of a small random subset of d (≥ 2)
servers, are promising solutions. For systems with identical servers (homo-
geneous), such randomized schemes have been shown [24, 14, 9] to result in
an exponential reduction in mean response time of jobs as compared to state
independent schemes, in which job assignments are made independently of
the states of the servers. This implies that for large homogeneous systems, a
small, randomly chosen subset of servers is representative of the distribution
of load in the overall system.

In this paper, we consider heterogeneous systems where servers are grouped
into different types or clusters, often geographically separated, based on their
capacities. For such systems, sampling servers without taking into account
the different server types may lead to instability [18, 17]. We therefore con-
sider randomized job assignment schemes, in which a small random subset
of servers is sampled from each server type. The least loaded servers of each
type are then compared based on some metric. The job is then assigned to
the “best” server that is likely to yield the least delay. We consider processor
sharing (PS) as the service discipline in this paper since it closely approxi-
mates round-robin discipline with small granularity [20] usually employed in
server farms. Moreover, processor sharing discipline has the desirable prop-
erty of being insensitive to job length distribution type [12].

1.2. Related literature. Randomized job assignment schemes have been
primarily studied in the literature for a system consisting of N identical first
come first serve (FCFS) servers, which is also referred to as the supermarket
model. Most studies consider the so called SQ(d) scheme in which each job
is assigned to the shortest of d randomly chosen queues.

For d ≥ 2, [24] showed, using the theory of operator semigroups, that
the equilibrium queue sizes decay doubly exponentially in the limit as the
system size increases (as N → ∞). Mitzenmacher in [14, 15] derived the
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same result using an extension of Kurtz’s theorem [7]. In [23], a coupling
argument was used to show that larger values of d result in more even distri-
bution of loads among the servers. Chaoticity on path space (or asymptotic
independence among queue length processes) was established in [9] using
empirical measures on the path space of the underlying Markov processes.
Results of [24] were generalized to the case of open Jackson networks in [13].

Recently, in [4], the SQ(d) scheme was analyzed under more general ser-
vice disciplines and service time distributions. It was shown that in the case
of FCFS discipline and power-law service time distribution, the equilibrium
queue sizes decay doubly exponentially, exponentially, or just polynomially,
depending on the power-law exponent and the number of choices, d. The
stability of more general randomized schemes for non-idling service disci-
plines was analyzed in [3], which derived a sufficient condition under which
such networks are stable. Asymptotic independence of servers in equilibrium
was proposed in [5] under local service disciplines and general service time
distributions. However, the result was proved only for FCFS service disci-
pline and service time distributions having decreasing hazard rate (DHR)
functions.

The tradeoff between sampling cost of servers and the expected sojourn
time seen by a customer in the supermarket model was studied under a game
theoretic framework in [28]. It was shown that for arrival rates within the
stability region of the network, a symmetric Nash equilibrium for identical
customers exists in which each customer chooses a fixed number of queues
to sample. Randomized schemes similar to the SQ(d) scheme were also used
in [19] for cache eviction based on cache hit rate.

Recently, in [18, 17], the SQ(d) scheme was considered for a system of
parallel processor sharing servers with heterogeneous service rates. It was
shown that, in the heterogeneous setting, sampling d servers uniformly at
random from the entire system reduces the stability region. This is unlike
the homogeneous setting, where uniformly sampling the d servers at each
arrival instant achieves the maximal stability region. It was also shown that
a combination of probabilistic job assignment across server type and SQ(d)
assignment within servers of the same type can recover the maximal sta-
bility region. This scheme was referred to as the Hybrid SQ(d) scheme.
Implementation of the hybrid SQ(d) scheme requires the knowledge of sys-
tem parameters and the arrival rate of jobs, which is difficult to estimate
online. Therefore, the hybrid SQ(d) scheme is not robust to system failures.
In this paper, we propose schemes which do not require the knowledge of
the system parameters or the arrival rate of jobs for their operation and yet
achieve the maximal stability region. Other works, such as [16, 27], focus on
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randomized job assignment in loss systems where the analysis is different
due to finiteness of the state space.

1.3. Main results. This paper focuses on the design and analysis of ran-
domized job assignment schemes which achieve the maximal stability region
for heterogeneous processor sharing systems without requiring the knowl-
edge of system parameters and yet yield smaller delays than randomized
state independent schemes. To this end, we propose two schemes in which
random subsets of servers are sampled from each type at each arrival instant.
The job is then assigned to the “best” server among all the sampled servers.
The metric for choosing the best server distinguishes the two schemes.

The schemes can be implemented as follows: A central dispatcher, upon
arrival of a new job, first requests local routers at each cluster of servers
having the same speed to send the index of a server from its corresponding
cluster. The local router then samples some servers from the corresponding
cluster uniformly at random and sends the index of the least loaded sampled
server to the central dispatcher. The central dispatcher finally compares the
states of the servers whose indices it has received and selects “best” server
as the final destination of the arriving job.

In the first scheme, the “best” server is selected simply based on the
number of jobs in the progress whereas in the second scheme, the sampled
server offering the maximum processing rate is taken to be the “best” server.
We note that, in the both the schemes, servers of all types are compared
to make job assignment decisions. We show that due to such sampling, the
proposed schemes achieve the maximum possible stability region.

We analyze the performance of the proposed schemes in the limit as the
system size N → ∞ using the mean field approach. Our contributions are
the following.

• We establish that the underlying Markov process describing the system
converges to a mean field using the theory of operator semigroup for
Markov processes as in [13, 2].

• The mean field is shown to have a unique, globally asymptotically
stable equilibrium point in the space of empirical tail measures hav-
ing finite first moment. Our proof differs significantly from the earlier
works since in the heterogeneous case closed form expression for the
equilibrium point cannot be obtained.

• The stationary distribution of the underlying Markov process is shown
to converge weakly to the Dirac measure concentrated at the unique
equilibrium point of the mean field, thus establishing a limit inter-
change argument that has been established in the context of heavy-
traffic for generalized Jackson network models [8, 6, 11].
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• Propagation of chaos or asymptotic independence among servers is
shown to hold at each finite time and also at the equilibrium. To
show this, we generalize the standard notion of exchangeability to
the notion of intra-type exchangeability to deal with random variables
having different distributions.

• The stationary tail distribution of server occupancies is shown to de-
cay doubly exponentially in the limiting system. We devise an indirect
method to show this, since, unlike the homogeneous case, closed form
solutions of the stationary distribution cannot be obtained in the het-
erogeneous scenario.

Numerical comparison of the proposed schemes with existing schemes
shows the superiority of the proposed schemes in terms of reducing the mean
response time of jobs while requiring no knowledge of the system parameters.

1.4. Organization. The rest of the paper is organized as follows. In Sec-
tion 2, we describe the system model, the proposed job assignment schemes
and our notations. We then analyze the proposed schemes in Sections 3, 4,
and 5. In Section 6, numerical results are presented that compare the pro-
posed schemes with other existing schemes to determine their efficacy. Fi-
nally, we conclude the paper in Section 7 with a summary and a discussion
on future work.

2. Model and notations. We consider a multi-server system consist-
ing of N parallel processor sharing (PS) servers. The capacity, C (bits/sec),
of a server is defined as the time rate at which it processes a single job
present in it. If there are q(t) jobs present at a server of capacity C at time
t, then the instantaneous rate at which each job is processed in the server
is given by C/q(t). Depending on their capacities, the servers in the system
are categorized into M (� N) types. Define J = {1, 2, . . . ,M} to be the
index set of server types. The capacity of type j servers is denoted by Cj , for
j ∈ J , and we assume, without loss of generality, that the server capacities
are ordered in the following way:

(2.1) C1 ≤ C2 ≤ . . . ≤ CM .

Further, for each j ∈ J , we denote the proportion of type j servers in the
system by γj (0 ≤ γj ≤ 1). Clearly,

∑M
j=1 γj = 1.

Jobs arrive at the system according to a Poisson process with rate Nλ.
Each job is of random length, independent and exponentially distributed
with a finite mean 1

μ (bits). Although we use this assumption in all our
proofs, we numerically observe that stationary distribution of the number
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Fig 1. System consisting of N parallel processor sharing (PS) servers, categorized into M
types. There are γjN servers of type j, each of which has a capacity or rate Cj . Arrivals
occur according to a Poisson process with rate Nλ. For each arrival, dj servers of type j
are sampled. The arrival is finally sent to to one of the sampled servers for processing.

of jobs in progress at each server does not depend on the type of job length
distribution (as long as the mean of the distribution remains unchanged)
due to the insensitivity of the processor sharing discipline. The inter-arrival
times and the job lengths are assumed to be independent of each other.
Upon arrival, a job is assigned to one of the N servers where the job stays
till the completion of its service after which it leaves the system. The model
is illustrated in Figure 1. We consider the following two job assignment
schemes.

2.1. Scheme 1. In this scheme, upon arrival of a job, dj servers of type j
are sampled uniformly at random from the set of Nγj servers of type j, for
each j ∈ J . Note that this sampling is done at the cluster of type j servers
by a local router.

Let
{
q
(j,1)
N , q

(j,2)
N , . . . , q

(j,dj)
N

}
denote the vector of occupancies of the dj

sampled servers of type j. For each type j ∈ J , a sampled server with index
kj is chosen for further comparison where kj is given by

(2.2) kj = arg min
1≤r≤dj

{
q
(j,r)
N

}
.

In case of ties among sampled servers of type j, the index kj is chosen
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uniformly at random from the tied servers of that type. The occupancy
information of the server corresponding to kj is sent to the central dispatcher.

Using this information from each of the clusters j ∈ J the arriving job
is assigned by the dispatcher to the type i sampled server having index ki
where

(2.3) i = arg min
1≤j≤M

{
q
(j,kj)
N

}
.

Ties across server types are broken by choosing the server type having the
highest capacity among the tied servers. Thus, in this scheme, each arrival
is assigned to the server having the least instantaneous occupancy among
the subset of randomly selected servers.

2.2. Scheme 2. As in Scheme 1, upon arrival of a job, a random subset
of dj servers of type j is chosen uniformly, for each j ∈ J . Then from each
type j ∈ J , a server with index kj is chosen according to (2.2) for further
comparison across different server types. The arriving job is finally assigned
to the type i sampled server having index ki if

(2.4) i = arg max
1≤j≤M

{
Cj/q

(j,kj)
N

}
.

Note that the quantity Cj/q
(j,kj)
N denotes the processing rate per unfin-

ished job at the sampled type j server with index kj . Thus, in this scheme,
an arrival is assigned to the server that provides the highest processing rate
per job among the sampled set of servers. Ties are broken in the same way
as described in Scheme 1.

It is clear that Scheme 2 differs from Scheme 1 only in the criterion for
server selection. In Scheme 1, server selection is done based only on the in-
stantaneous occupancies of the sampled servers, whereas in Scheme 2 server
capacities are also taken into account in the selection criterion. Note that
in the heterogeneous scenario a server with higher occupancy can still pro-
vide a higher processing rate than a server with lower occupancy. Therefore,
Scheme 2 provides a finer metric for server selection.

2.3. Notations. We define the following real sequence spaces:

Ū (j)
N = {{gn}n∈Z+

: g0 = 1, gn ≥ gn+1 ≥ 0, Nγjgn ∈ N ∀n ∈ Z+},(2.5)

Ū = {{gn}n∈Z+
: g0 = 1, gn ≥ gn+1 ≥ 0 ∀n ∈ Z+},(2.6)

U = {{gn}n∈Z+
: g0 = 1, gn ≥ gn+1 ≥ 0 ∀n ∈ Z+,

∞∑
n=0

gn < ∞}.(2.7)
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Let
∏

j∈J Ū (j)
N , ŪM , and UM denote the Cartesian products of Ū (j)

N , Ū , and
U , respectively, over j ∈ J . An element u =

{
u
(j)
n , j ∈ J , n ∈ Z+

}
belongs

to
∏

j∈J Ū (j)
N , ŪM , or UM if for each j ∈ J , the sequence

{
u
(j)
n

}
n∈Z+

belongs

to Ū (j)
N , Ū , or U , respectively. For u,w ∈ ŪM we define the following distance

metric

(2.8) ‖u−w‖ = sup
j∈J

sup
n∈Z+

∣∣∣∣∣u
(j)
n − w

(j)
n

n+ 1

∣∣∣∣∣ .
It can be easily verified that under the metric defined in (2.8), the space ŪM

is compact (and hence complete and separable). Further, for any k ∈ Z+

and i, j ∈ J , we define


k�ij =
⌊
Cj

Ci
k

⌋
+ 1,(2.9)

�kij =
⌈
Cj

Ci
k

⌉
,(2.10)

where 
x� denotes the greatest integer not exceeding x and �x denotes the
smallest integer greater than or equal to x.

Let (H,H, μH) be a measure space and f : H → R be a μH -integrable
function. We define duality brackets as 〈f, μH〉 =

∫
fdμH . We denote the

weak convergence (convergence in distribution) of a sequence of probability
measures Pn (random variables Xn) to a probability measure P (random
variable X) by Pn ⇒ P (Xn ⇒ X).

3. Stability analysis. In this section, we derive the sufficient condition
for the system to ne stable, i.e., to have a finite expected number of jobs at
all times under Scheme 1 and Scheme 2.

To formally state our results, we define the process

(3.1) xN (t) =
{
x
(j)
N,n(t), j ∈ J , n ∈ Z+

}
for t ≥ 0,

where x
(j)
N,n(t) denotes the fraction of type j servers having at least n un-

finished jobs at time t. Thus,
{
x
(j)
N,n(t), n ∈ Z+

}
denotes the empirical tail

distribution of occupancy of type j servers at time t. Clearly, xN (t) is a

Markov process in the state space
∏

j∈J Ū (j)
N .

We now find the set of arrival rates for which the Markov process xN (·)
is positive recurrent or stable.

Theorem 3.1. The system under consideration is stable (i.e., the pro-
cess xN (·) is positive recurrent) under both Scheme 1 and Scheme 2 if
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(3.2) λ < μ
∑
j∈J

γjCj .

Furthermore, for λ > μ
∑

j∈J γjCj the system is unstable under any job
assignment scheme.

Proof. We provide a proof via coupling argument. Consider a modified
scheme in which, upon arrival of each job, one server is chosen from each
type uniformly at random (i.e., dj = 1 for all j ∈ J ). The job is then

routed to the sampled server of type j with probability
γjCj∑
i∈J γiCi

for each

j ∈ J . A simple coupling argument, similar to the one discussed in the proof
of Theorem 3 of [13], shows that the system operating under the modified
scheme always has higher number of unfinished jobs than that operating
under Scheme 1 or Scheme 2.

Now the system operating under the modified scheme is stable if the
arrival rate to any server is less than the service rate at the server. Clearly,
the rate of arrival of jobs at a type j server under the modified scheme is
Nλ × 1

Nγj
× γjCj∑

i∈J γiCi
=

λCj∑
i∈J γiCi

. The service rate of a type j server is

μCj . Hence, condition (3.2), guarantees that the arrival rate is smaller than
the service rate for each type of servers. This implies that under (3.2) the
system is stable under the modified scheme. Due to the coupling argument
described above it also implies that under (3.2) the system is stable under
Scheme 1 and Scheme 2.

As discussed in [3], for λ > μ
∑

j∈J γjCj , the system under consideration
is unstable under any job assignment policy.

Thus, from Theorem 3.1 we conclude that Scheme 1 and Scheme 2 achieve
the maximal stability region given by (3.2).

4. Mean field analysis. We now analyze the time evolution of the
process xN (·) under Scheme 1 and Scheme 2. Its exact characterization is
difficult since under both the schemes, arrivals at a given server depend on
the states of other servers. However, it is possible to analyze the system
in the limit as the system size N → ∞. We show that the process xN (·)
weakly converges to a deterministic process u(·) as N → ∞. We also show
that the steady state behavior of the process xN (·) can be approximated by
the equilibrium point of the process u(·) for large values of N .

4.1. Convergence to the mean field. The main aim of this subsection is
to prove the following result.
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Theorem 4.1. If xN (0) converges in distribution to some constant g ∈
ŪM as N → ∞, then the process {xN (t)}t≥0 converges in distribution to

a process {u(t)}t≥0, lying in the space ŪM as N → ∞. For Scheme 1, the
process u(t) is given by the solution of the following system of differential
equations

u(0) = g,(4.1)

u̇(t) = l(u(t)),(4.2)

where the mapping l : ŪM →
(
R
Z+
)M

is given by

l
(j)
0 (u) = 0, for j ∈ J ,(4.3)

l
(j)
k (u) =

λ

γj

((
u
(j)
k−1

)dj
−
(
u
(j)
k

)dj) j−1∏
i=1

(
u
(i)
k−1

)di M∏
i=j+1

(
u
(i)
k

)di
(4.4)

− μCj

(
u
(j)
k − u

(j)
k+1

)
, for k ≥ 1, j ∈ J .

For Scheme 2, the process u(t) is given by the solution of

u(0) = g,(4.5)

u̇(t) = l̃(u(t)),(4.6)

where the mapping l̃ : ŪM →
(
R
Z+
)M

is given by

l̃
(j)
0 (u) = 0, for j ∈ J ,(4.7)

l̃
(j)
k (u) =

λ

γj

((
u
(j)
k−1

)dj
−
(
u
(j)
k

)dj) j−1∏
i=1

(
u
(i)
�k−1�ji

)di
(4.8)

×
M∏

i=j+1

(
u
(i)
�k−1	ji

)di
− μCj

(
u
(j)
k − u

(j)
k+1

)
, for k ≥ 1, j ∈ J .

The process u(·), defined in the theorem above, is referred to as the mean
field limit of the system. To emphasize the dependence of the process u(·)
on the initial point u(0) = g, we will often denote u(t) by u(t,g).

Remark 4.1. We note that Theorem 4.1 implies that if xN (0) ⇒ g ∈
ŪM as N → ∞, then the following weaker convergence results also hold:

1. For each t ≥ 0, xN (t) ⇒ u(t,g) as N → ∞.

2. For each t ≥ 0, j ∈ J , and k ∈ Z+, x
(j)
N,k(t) ⇒ u

(j)
k (t,g) as N → ∞.
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3. For each t ≥ 0, j ∈ J , and k ∈ Z+, E
[
x
(j)
N,k(t)

]
→ u

(j)
k (t,g) as N → ∞.

The last assertion follows from the first since x
(j)
N,k(t) is bounded for each

N, j, k, t.

We first note that Theorem 4.1 implicitly assumes that the ordinary differ-
ential systems (4.1)–(4.2) and (4.5)–(4.6) have unique solutions in the space
ŪM . In the following proposition, we show that this is indeed the case.

Proposition 4.1. If g ∈ ŪM , then each of the systems (4.1)–(4.2)
and (4.5)–(4.6) has a unique solution u(t,g) ∈ ŪM , for all t ≥ 0.

Proof. The proof is given in Appendix A.

We will prove Theorem 4.1 using the theory of semigroup operators of
Markov processes as in [24, 13, 2]. Some of the key definitions and results
which we use in this topic are given in Appendix E. For more details the
reader is referred to [7]. First, we recall the following:

• The operator semigroup {TN (t)}t≥0 corresponding to the Markov pro-

cess xN (·) acting on continuous functions f :
∏M

j=1 Ū
(j)
N → R is defined

as

TN (t)f(x)=E [f(xN (t))|xN (0)=x] ∀t ≥ 0,x ∈
∏
j∈J

Ū (j)
N .

• For the deterministic process {u(t)}t≥0, the transition semigroup

{T(t)}t≥0 acting on continuous functions f : ŪM → R is defined as

T(t)f(x) = f(u(t,x)) ∀t ≥ 0,x ∈ ŪM .

In the next proposition, we show that {TN (t)}t≥0 converges to {T(t)}t≥0

uniformly on bounded intervals. The above fact in conjunction with Theorem
2.11 of Chapter 4 of [7] proves Theorem 4.1.

Proposition 4.2. For both Scheme 1 and Scheme 2, and for any con-
tinuous function f : ŪM → R and t ≥ 0,

(4.9) lim
N→∞

sup
g∈
∏

j∈J Ū(j)
N

|TN (t)f(g)− f(u(t,g))| = 0

and the convergence is uniform in t within any bounded interval.

Proof. The proof is given in Appendix B.
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4.2. Properties of the mean field. In this section, we characterize some
important properties of the mean field. In particular, we show that, under
the stability condition (3.2), both (4.1)–(4.2) and (4.5)–(4.6) have unique
equilibrium points in UM . Further, we show that the equilibrium points are
globally asymptotically stable for both systems.

Let P, P̃ denote the equilibrium points of (4.1)–(4.2) and (4.5)–(4.6),
respectively. In other words, P and P̃ satisfy l(P) = 0 and l̃(P̃) = 0. Hence,
for all k ∈ Z+ and j ∈ J the following must hold

(4.10) P
(j)
k+1 − P

(j)
k+2 = Δj

((
P

(j)
k

)dj
−
(
P

(j)
k+1

)dj)

×
j−1∏
i=1

(
P

(i)
k

)di M∏
i=j+1

(
P

(i)
k+1

)di
,

(4.11) P̃
(j)
k+1 − P̃

(j)
k+2 = Δj

((
P̃

(j)
k

)dj
−
(
P̃

(j)
k+1

)dj)

×
j−1∏
i=1

(
P̃

(i)
�k�ji

)di M∏
i=j+1

(
P̃

(i)
�k	ji

)di
,

where Δj = λ
μγjCj

for each j ∈ J . Note that by definition we have P
(j)
0 =

P̃
(j)
0 = 1 for all j ∈ J . The next proposition reveals an important property

of the equilibrium points P and P̃. To state it we first need the following
definition.

Definition 4.1. A real sequence {zn}n≥1 is said to decrease doubly ex-
ponentially if and only if there exist positive constants L, ω < 1, θ > 1, and
κ such that zn ≤ κωθn for all n ≥ L.

Hence, if a sequence {zn}n≥1 decays doubly exponentially, then it is
summable, i.e.,

∑∞
n=1 zn < ∞.

Proposition 4.3. Assume that for each j ∈ J , P
(j)
k , P̃

(j)
k ↓ 0 as k → ∞.

Then the following equations must hold

∑
j∈J

P
(j)
l+1

Δj
=
∏
j∈J

(
P

(j)
l

)dj
.(4.12)

P̃
(1)
l+1

Δ1
+

M∑
j=2

P̃
(j)
�l−1	1j+1

Δj
=
(
P̃

(1)
l

)d1 M∏
j=2

(
P̃

(j)
�l−1	1j

)dj
.(4.13)
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Further, for each j ∈ J , the sequences
{
P

(j)
k , k ∈ Z+

}
and

{
P̃

(j)
k , k ∈ Z+

}
decrease doubly exponentially. In particular, under the assumption of the

proposition, both
{
P

(j)
k , k∈Z+

}
and

{
P̃

(j)
k , k∈Z+

}
are summable sequences.

Proof. We prove the proposition for P. The proof for P̃ follows along
the same line of arguments. For a fix j we add (4.10) for all k ≥ l and use

limk→∞ P
(j)
k = 0 to obtain

(4.14)

P
(j)
l+1 = Δj

∑
k≥l

⎡
⎣ j∏
i=1

(
P

(i)
k

)di M∏
i=j+1

(
P

(i)
k+1

)di
−

j−1∏
i=1

(
P

(i)
k

)di M∏
i=j

(
P

(i)
k+1

)di⎤⎦
Now, multiplying both sides of the above equation by 1

Δj
and adding over

all j ∈ J and using limk→∞ P
(j)
k = 0 yields (4.12). From (4.12) we obtain

P
(j)
k+1

Δj
≤
∏

j∈J

(
P

(j)
k

)dj
≤
(
P̂k

)d
, where P̂k = max1≤j≤M P

(j)
k and d =∑

j∈J dj . Thus, we have P
(j)
k+1 ≤ δP̂k, where δ =

(
P̂k

)d−1
max1≤j≤M (Δj).

Since by hypothesis, for each j, P
(j)
k → 0 as k → ∞, one can choose k

sufficiently large such that δ < 1. Hence, we have
(
max1≤j≤M P

(j)
k+1

)
≤

δP̂k. Similarly we have,
(
max1≤j≤M P

(j)
k+n

)
≤ δ

dn−1
d−1 P̂k. This proves that the

sequence
{
P

(j)
k , k ∈ Z+

}
decreases doubly exponentially for each j.

The following proposition guarantees that there exists equilibrium points
of systems (4.1)–(4.2) and (4.5)–(4.6) in UM for M = 2.

Theorem 4.2. Under condition (3.2), there exists an equilibrium point
P of the system (4.1)–(4.2) and P̃ of the system (4.5)–(4.6) in the space UM

for M = 2.

Proof. The proof is given in Appendix C.

The question of the existence of the equilibrium point for the above sys-
tems remains as an open problem for M > 2. However, all our numerical
studies indicate the existence of an equilibrium point for M > 2 in the space
UM . For the rest of the paper, we assume that equilibirum points of the sys-
tems defined by (4.1)–(4.2) and (4.5)–(4.6) exist in the space UM for all
M ≥ 2.
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The next theorem shows that P and P̃ are the unique globally asymptot-
ically stable equilibrium points of the systems (4.1)–(4.2) and (4.5)–(4.6) in
the space UM .

Theorem 4.3. Under condition (3.2),

(4.15) lim
t→∞

u(t,g) = P ∈ UM for all g ∈ UM ,

for Scheme 1 and

(4.16) lim
t→∞

u(t,g) = P̃ ∈ UM for all g ∈ UM ,

for Scheme 2. Hence, P and P̃ are globally asymptotically stable fixed points
of systems (4.1)–(4.2) and (4.5)–(4.6), respectively. Furthermore, P and P̃
are the only equilibrium points of the above systems in the space UM .

Proof. The proof for Scheme 1 is given in Appendix D. For Scheme 2,
the theorem can be proved similarly.

We now show that, under (3.2), the stationary distribution of the process
xN converges weakly to the Dirac measure concentrated at the unique equi-
librium point of the mean field. Let πN denote the stationary distribution of
the process xN . Since condition (3.2) guarantees the positive recurrence of
the process xN (·), it also implies that πN exists and is unique. Furthermore,
positive recurrence also impies that for each fixed N , xN (t) ⇒ xN (∞) as
t → ∞, where xN (∞) is a random variable distributed as πN .

Theorem 4.4. Under condition (3.2), we have

(4.17) πN ⇒ δP,

for Scheme 1 and

(4.18) πN ⇒ δP̃,

for Scheme 2.

Proof. We prove the theorem for Scheme 1. The proof for Scheme 2
follows similarly.

Note that since the space ŪM is compact, so is the space of probability
measures on ŪM . Therefore, according to Prokhorov’s theorem [7] the se-
quence of probability measures {πN}N has limit points. Thus, in order to
prove the theorem we need to show that all limit points coincide with δP.
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Fig 2. Commutativity of limits

Due to Theorem 4.1, any limit point π of the sequence πN must be
an invariant distribution of the maps g �→ u(t,g). Hence, by uniqueness
proved in Theorem 4.3, it is sufficient to prove that π is concentrated on
UM . To prove that π is concentrated on UM it is sufficient to show that

Eπ

[∑
n≥1 g

(j)
n

]
< ∞ for all j ∈ J . The coupling described in the proof of

Theorem 3.1 implies that EπN

[∑
n≥1 g

(j)
n

]
≤ ρ

1−ρ , where ρ = λ
μ
∑

j∈J γjCj
<

1. Hence, EπN

[∑
n≥1 g

(j)
n

]
→ Eπ

[∑
n≥1 g

(j)
n

]
≤ ρ

1−ρ . This completes the

proof.

We have so far established that the interchange property indicated in
Figure 2 holds. Note that the convergences indicated in the figure are in
distribution.

4.3. Propagation of chaos. In this subsection, we focus on the occupan-
cies of a given finite set of servers as N → ∞. We show that as the system
size grows the server occupancies become independent of each other. Such
independence holds at any finite time and also at the equilibrium, provided
that the initial server occupancies satisfy certain assumptions. This is for-
mally known as the propagation of chaos [9, 22] or asymptotic independence
property [5, 4] in the literature.

To formally state the results we introduce the following notations. Let

q
(j,k)
N (t), for j ∈ J and k ∈ {1, 2, . . . , Nγj}, denote the occupancy of the

kth server of type j at time t ≥ 0. By q
(j,k)
N (∞) we denote the occupancy of

the kth server of type j in equilibrium. Further, let χ
(j)
N,n(t), for j ∈ J and

n ∈ Z+, denote the fraction of type j servers having occupancy n at time t ≥
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0. Define the process χN (t) =
{
χ
(j)
N,n(t), j ∈ J , n ∈ Z+

}
. Clearly, χ

(j)
N (t) ={

χ
(j)
N,n(t), n ∈ Z+

}
denotes the empirical distribution of occupancies of type

j servers and for each n, j, we have χ
(j)
N,n(t) = x

(j)
N,n(t) − x

(j)
N,(n+1)(t). By

χ
(j)
N (∞) we will denote the empirical distribution occupancies for type j

servers in equilibrium. Let the process Q(t) =
{
Q

(j)
n (t), j ∈ J , n ∈ Z+

}
be

defined as Q
(j)
n (t) = u

(j)
n (t) − u

(j)
n+1(t), for t ∈ [0,∞]. Further, we denote by

Q(j)(t) the distribution on Z+ given by Q(j)(t) =
{
Q

(j)
n , n ∈ Z+

}
. We also

define the following notion of exchangeable random variables.

Definition 4.2. Let
{
q
(j,k)
N , 1 ≤ k ≤ Nγj , 1 ≤ j ≤ M

}
denote a collec-

tion of N random variables among which Nγj belong to a particular class j
and are indexed by k, where 1 ≤ k ≤ Nγj. The collection is called intra-class
exchangeable if the joint law of the collection is invariant under permutation
of indices, 1 ≤ k ≤ Nγj, of random variables belonging to the same class.

Proposition 4.4. For the model considered in this paper, for both

schemes, if
{
q
(j,k)
N (0), 1 ≤ k ≤ Nγj , 1 ≤ j ≤ M

}
is intra-class exchangeable

and if xN (0) ⇒ g ∈ UM as N → ∞, then the following holds

(i) For each fix k and t ∈ [0,∞], q
(j,k)
N (t) ⇒ U (j)(t) as N → ∞, where

U (j)(t) is a random variable with distribution Q(j)(t).
(ii) Fix positive integers r1, r2, . . . , rM . For each t ∈ [0,∞],{

q
(j,k)
N , 1 ≤ k ≤ rj , 1 ≤ j ≤ M

}
⇒
{
U (j,k)(t), 1 ≤ k ≤ rj , 1 ≤ j ≤ M

}
,

as N → ∞, where U (j,k)(t), 1 ≤ k ≤ rj , 1 ≤ j ≤ M , are independent
random variables with U (j,k)(t) having distribution Q(j)(t) for all 1 ≤
k ≤ rj.

Proof. Note that the first part of the proposition is a special case of the
second part. Hence, it is sufficient to prove the second part. For notational
convenience, we provide a proof for the M = 2 case. The proof can be readily
generalized to any M ≥ 2.

Due to the dynamics of the system (under Scheme 1 or Scheme 2) and

the hypothesis of the proposition {q(j,k)N (t), 1 ≤ k ≤ Nγj , 1 ≤ j ≤ M} is
intra-class exchangeable for all t ∈ [0,∞]. The hypothesis of the proposition
also implies that χN (t) ⇒ Q(t) as N → ∞ for all t ∈ [0,∞]. Henceforth, we
will omit the variable t in our calculations, which hold for all t ∈ [0,∞].
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To prove the proposition, it is sufficient to show that the following con-
vergence holds as N → ∞.

(4.19) E

[
r1∏
k=1

φk

(
q
(1,k)
N

) r2∏
k=1

ψk

(
q
(2,k)
N

)]
→

r1∏
k=1

〈φk, Q
(1)〉

r2∏
k=1

〈ψk, Q
(2)〉

for all bounded mappings φk, ψk : Z+ → R+. Now we have

(4.20)

∣∣∣∣∣E
[

r1∏
k=1

φk

(
q
(1,k)
N

) r2∏
k=1

ψk

(
q
(2,k)
N

)]
−

r1∏
k=1

〈φk, Q
(1)〉

r2∏
k=1

〈ψk, Q
(2)〉
∣∣∣∣∣

≤
∣∣∣∣∣E
[

r1∏
k=1

φk

(
q
(1,k)
N

) r2∏
k=1

ψk

(
q
(2,k)
N

)]
− E

[
r1∏
k=1

〈φk, χ
(1)
N 〉

r2∏
k=1

〈ψk, χ
(2)
N 〉
]∣∣∣∣∣

+

∣∣∣∣∣E
[

r1∏
k=1

〈φk, χ
(1)
N 〉

r2∏
k=1

〈ψk, χ
(2)
N 〉
]
−

r1∏
k=1

〈φk, Q
(1)〉

r2∏
k=1

〈ψk, Q
(2)〉
∣∣∣∣∣ .

Note that the second term on the right hand side of the above inequality

vanishes as N → ∞ since χ
(j)
N ⇒ Q(j) as N → ∞ for j = 1, 2 and Q(1) and

Q(2) are constants. Now, due to exchangeability we have

(4.21) E

[
r1∏
k=1

φk

(
q
(1,k)
N

) r2∏
k=1

ψk

(
q
(2,k)
N

)]
=

1

(Nγ1)r1(Nγ2)r2

× E

⎡
⎣ ∑
σ∈P (r1,Nγ1)

∑
σ′∈P (r1,Nγ1)

r1∏
k=1

φk

(
q
(1,σ(k))
N

) r2∏
k=1

ψk

(
q
(2,σ′(k))
N

)⎤⎦ ,
where (N)k = N(N − 1) . . . (N − k + 1), and P (r, n) denotes the set of
all permutations of the numbers {1, 2, . . . , N} taken r at a time. Also, by

definition of χ
(j)
N we have

(4.22) E

[
r1∏
k=1

〈φk, χ
(1)
N 〉

r2∏
k=1

〈ψk, χ
(2)
N 〉
]
= E

[(
r1∏
k=1

1

Nγ1

Nγ1∑
l=1

φk

(
q
(1,l)
N

))

×
(

r2∏
k=1

1

Nγ2

Nγ2∑
l=1

ψk

(
q
(2,l)
N

))]

Hence, the first term on the right hand side of (4.20) can be bounded as
follows∣∣∣∣∣E

[
r1∏
k=1

φk

(
q
(1,k)
N

) r2∏
k=1

ψk

(
q
(2,k)
N

)]
− E

[
r1∏
k=1

〈φk, χ
(1)
N 〉

r2∏
k=1

〈ψk, χ
(2)
N 〉
]∣∣∣∣∣
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≤ 2Br1+r2

(
1− (Nγ1)r1(Nγ2)r2

(Nγ1)r1(Nγ2)r2

)
,

→ 0 as N → ∞,

where max (‖φk‖∞, ‖ψk‖∞) = B. This completes the proof.

Thus, the above proposition shows that in the limiting system server
occupancies become independent of each other. It also shows that the sta-
tionary occupancy distribution of any type j server is given by Q(j)(∞) ={
P

(j)
n − P

(j)
n+1, n ∈ Z+

}
for Scheme 1 and Q(j)(∞) =

{
P

(j)
n − P̃

(j)
n+1, n ∈ Z+

}
for Scheme 2.

5. Computation of the stationary distribution. So far we have
shown that in the limiting system (N → ∞) each finite collection of servers
behave independently and the stationary tail distribution of occupancy of a

type j ∈ J server in the limiting system is given by
{
P

(j)
k , k ∈ Z+

}
under

Scheme 1 and
{
P

(j)
k , k ∈ Z+

}
under Scheme 2. Using the independence of

servers in the limiting system we conclude the following proposition.

Proposition 5.1. In equilibrium, the arrival process of jobs at any given
server in the limiting system is a state dependent Poisson process. Further,
the arrival rate of jobs to a server of type j ∈ J when it has occupancy k in
the equilibrium is given by

(5.1) λ
(j)
k =

λ

γj

(
P

(j)
k

)dj
−
(
P

(j)
k+1

)dj
P

(j)
k − P

(j)
k+1

j−1∏
i=1

(
P

(i)
k

)di M∏
i=j+1

(
P

(i)
k+1

)di
,

for Scheme 1 and

(5.2) λ̃
(j)
k =

λ

γj

(
P̃

(j)
k

)dj
−
(
P̃

(j)
k+1

)dj
P̃

(j)
k − P̃

(j)
k+1

j−1∏
i=1

(
P̃

(i)
�k�ji

)di M∏
i=j+1

(
P̃

(i)
�k	ji

)di
,

for Scheme 2.

Proof. We provide the proof for Scheme 1. The proof for Scheme 2
follows from similar line of arguments.

Consider a tagged type j server in the system and the arrivals that have
the tagged server as one of its possible destinations. These arrivals constitute
the potential arrival process at the tagged server. The probability that the
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tagged server is selected as a potential destination server for a new arrival is
(Nγj−1

dj−1
)

(Nγj
dj

)
=

dj
Nγj

. Thus, due to Poisson thinning, the potential arrival process

to the tagged server is a Poisson process with rate
dj
Nγj

×Nλ =
djλ
γj

.

Next, we consider the arrivals that actually join the tagged server. These
arrivals constitute the actual arrival process at the server. For finite N ,
this process is not Poisson since a potential arrival to the tagged server
actually joins the server depending on the number of jobs present at the other
possible destination servers. However, as N → ∞, due to the asymptotic
independence property shown in 4.4 the occupancies of the sampled servers
become independent of each other. As a result, in equilibrium, the actual
arrival process converges to a state dependent Poisson process as N → ∞.

Consider the potential arrivals that occur to the tagged server when its
occupancy is k. This arrival actually joins the tagged server with probability
1

x+1 when x other servers among the dj servers of type j have occupancy
k, all the di servers of type i < j have at least occupancy k, and all the di
servers of type i > j have at least occupancy k + 1. Thus, the total arrival

rate λ
(j)
k can be computed as

(5.3) λ
(j)
k =

djλ

γj

dj−1∑
x=0

1

x+ 1

(
dj − 1

x

)(
P

(j)
k − P

(j)
k+1

)x (
P

(j)
k+1

)dj−1−x

×
j−1∏
i=1

(
P

(i)
k

)di M∏
i=j+1

(
P

(i)
k+1

)di
,

which simplifies to (5.1).

Hence, the above proposition shows that in equilibrium the arrival rate

at a given server depends on the stationary tail probabilities P
(j)
k , k ∈ Z+

and j ∈ J .
The stationary tail probabilities can in turn be expressed as functions of

the arrival rate. Indeed, in equilibrium, the global balance equations (which
hold under state dependent Poisson arrivals due to Theorems 3.10 and 3.14
of [12]) yield

(5.4) π
(j)
k λ

(j)
k = π

(j)
k+1μCj , for j ∈ J , k ∈ Z+,

where π
(j)
k = P

(j)
k − P

(j)
k+1. Hence, the equilibrium point P is the fixed point

(which is unique by Theorem 4.3) of the mapping Θ : UM → UM defined as
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Θ(P) = F (G(P)), where G(·) denotes the mapping from UM to the space of
possible arrival rates (defined by (5.1)) and F (·) denotes the mapping from
the space of possible arrival rates to the space UM (defined by (5.4)). We
compute the equilibrium point P using the fixed point iterations (i.e., by
repeatedly applying the mapping Θ(·) to some arbitrary point Q ∈ UM .)
Although the method seems to always converge to the unique equilibrium
point P , we do not give any formal proof of convergence. This method to
numerically compute the equilibrium point P in Section 6.

Remark 5.1. So far our results have been obtained for exponential
job length distributions. If the independence of servers (as shown in Theo-
rem 4.4) holds for all job length distributions, then Proposition 5.1 continues
to hold irrespective of the job length distribution. This implies that (5.4)
holds. Since the servers in the system are processor sharing servers and (5.4)
represents detailed balance, Theorem 1 of [29] implies that that the station-
ary distribution of each server in the limiting system is insensitive to job
length distributions. Hence, if the asymptotic independence of servers for
general job length distributions holds, the stationary distribution of server
occupancies in the limiting system would be insensitive to the job length
distribution type and only depend on its mean. We refer to this as the
asymptotic insensitivity property. The proof of asymptotic insensitivity for
general service time distributions for the PS model have not been shown
and continues to be a topic of interest.

Remark 5.2. From Proposition 4.4 it directly follows that the expected

occupancy of a type j server at equilibrium is given by
∑∞

k=1 P
(j)
k for Scheme 1

and
∑∞

k=1 P̃
(j)
k for Scheme 2. Hence, a simple application of the Little’s law,

yields that the mean sojourn time of jobs in the limiting system is given by

(5.5) T̄ =
1

λ

M∑
j=1

∞∑
k=1

γjP
(j)
k

for Scheme 1, and

(5.6) T̄ =
1

λ

M∑
j=1

∞∑
k=1

γjP̃
(j)
k

for Scheme 2. Thus, the mean sojourn time of jobs in the limiting system
can be computed using stationary tail probabilities which in turn can be
computed using the fixed point method as described earlier in this section.
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6. Numerical results. In this section, we first investigate the accu-
racy of the mean field analysis of Scheme 1 and Scheme 2 in predicting the
performance of the schemes for large but finite systems. To show the efficacy
of the proposed schemes, we then numerically compare the mean response
time of jobs under the proposed schemes with that under other existing
schemes. Finally, numerical evidence to support asymptotic insensitivity is
also provided. All simulation results, presented in this section, are obtained
by averaging 10,000 independent runs. We set μ = 1 in all our simulations.

To investigate the accuracy of the asymptotic analysis presented in this
paper, we compare the mean response time of jobs computed from (5.5)
with that obtained by simulating the finite system for different values of N
and d, where dj = d for all j ∈ J . To numerically compute the equilib-

rium tail probabilities P
(j)
k , we use the the fixed point method discussed

in Section 5. Although for each j ∈ J , the number of components of

P (j) =
(
P

(j)
k , k ∈ Z+

)
is infinite, for numerical computation we use only the

first 100 components beyond which the values of the tail probabilities become
negligible. We choose the following parameter setting:M = 2, γ1 = γ2 = 0.5,
μ = 1, C1 = 2/3, C2 = 4/3. For the above parameter setting the maximal
stability region of the system is given by Λ = {λ : 0 ≤ λ < 1}. We choose
λ = 0.8, which lies in the stability region. The results are shown in Ta-
ble 1. As expected, the difference between the asymptotic results and the
corresponding simulation results decreases with the increase in N . We also
observe that for the same value of N , increasing d, increases the percent-
age of error between the simulation results and the results obtained from
the mean field limit. This is because for finite N increasing d increases the
correlation between the servers. This acts in opposition to the independence
of servers in the limiting system. From the results it is clear that the mean
field analysis quite accurately captures the behavior of finite systems under
the type-based scheme.

Table 1

Accuracy of the mean field analysis of Scheme 1

d Asymptotic N = 20 N = 50 N = 100 N = 200

2 1.3687 1.4695 1.3960 1.3720 1.3689

4 1.0960 1.2319 1.1492 1.1211 1.1055

6 1.0123 1.1595 1.0699 1.0396 1.0281

8 0.9732 1.1216 1.0328 1.0007 0.9847

10 0.9539 1.1064 1.0083 0.9788 0.9646
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We now compare the performance of the proposed schemes with that of
other existing schemes for heterogeneous scenario. In particular, we consider
the following two schemes as benchmarks.

6.1. The state independent scheme. As a baseline, we consider a scheme
that assigns an incoming job to a server with a fixed probability, independent
of the current state of the servers in the system [1]. We denote by pj , for j ∈
J , the probability with which an arrival is assigned to one of the servers of
type j. The probabilities pj , j ∈ J , can be chosen chosen such that the mean
sojourn time of the jobs is minimized. The optimal routing probabilities are
given by Theorem 1 of [1]. Clearly, in this scheme, no communication is
required between the job dispatcher and the servers as the job assignment
decisions are made independently of the state of the servers.

6.2. The hybrid SQ(d) scheme. This scheme was proposed in [17, 18]. In
it, upon arrival of a new job, the router first chooses a server type j ∈ J
with probability pj . Then d servers of type j are chosen uniformly at random
from set of Nγj servers of type j. The job is then assigned to the server
having the least number of unfinished jobs among the d chosen servers. Ties
are broken by tossing a fair coin. As in the state independent scheme, the
probabilities pj , j ∈ J , can be chosen such that the mean sojourn time of
jobs in the system is minimized. The optimal routing probabilities are given
by Proposition 9 of [18].

We now compare the mean response time of jobs under Scheme 1 and
Scheme 2 with that under the state independent scheme and the hybrid
SQ(d) scheme. We choose the parameter values as follows: M = 2, C1 = 1/5,
C2 = 9/5, γ1 = γ2 = 0.5. For Scheme 1 and Scheme 2, we take d1 = d2 = 2
and for the Hybrid SQ(d) scheme we choose d = 2. Note that in this setting,
upon arrival of each job a total of 4 servers are compared in Scheme 1 and
Scheme 2 while just 2 servers are compared in the Hybrid SQ(d) scheme.
Such a comparison is fair because in Scheme 1 and Scheme 2 the d servers
from each of the different clusters can be sampled in parallel by local routers.
This takes the same time as sampling the d servers from one cluster in
the Hybrid SQ(d) scheme. Under the above parameter setting, the stability
region for all the schemes under consideration is λ < 1. In Figure 3, we plot
the mean sojourn time of jobs as a function of the normalized arrival rate,
λ, for Scheme 1, Scheme 2, the state independent scheme, and the hybrid
SQ(d) scheme. We choose the optimal routing probabilities pj , j ∈ J , for
both state independent scheme and the hybrid SQ(d) scheme. We observe
that the mean sojourn time of jobs under Scheme 1 and is almost the same
as that under Scheme 2 for small values of λ. However, for larger values of λ,
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Fig 3. Mean sojourn time jobs as a function of λ for different schemes. We set M = 2,
C1 = 1/5, C2 = 9/5, γ1 = γ2 = 0.5, and d1 = d2 = 2. Routing probabilities for the state
independent scheme and the Hybrid SQ(d) scheme are optimized based on λ.

Scheme 2 outperforms Scheme 1. This is expected for reasons explained in
Section 2. We also see that hybrid SQ(d) scheme results in a smaller mean
sojourn time of jobs than that in Scheme 1 and Scheme 2, for smaller values
of λ. This is because, in the hybrid SQ(2) scheme, the routing probabilities
are chosen optimally based on the arrival rate λ. However, for larger values
of λ, we observe that Scheme 2 outperforms the hybrid SQ(d) scheme.

The optimal routing probabilities for the state independent scheme and
the hybrid scheme require knowledge of the arrival rate λ, which is difficult
to estimate online. To avoid this difficulty, we fix the routing probabilities
for the hybrid SQ(d) scheme and the state independent scheme as follows:
we choose pi =

γiCi∑
j∈J γjCj

for each server type i ∈ J . This choice of routing

probabilities ensures that all arrival rates in the maximal stability region can
be supported by the system operating under either the state independent
scheme or the Hybrid SQ(d) scheme. We choose the same parameter setting
as before and plot mean sojourn time of jobs as a function of λ in Figure 4 for
the schemes under consideration. In this case, we notice that both Scheme 1
and Scheme 2 outperform the hybrid SQ(d) scheme. Hence, in the scenarios
where estimation of arrival rates is not possible, Scheme 2 is a better choice
than the hybrid SQ(d) scheme.

We now numerically investigate the behavior of the proposed schemes
under different job length distributions. In Table 2, mean sojourn time of jobs
under Scheme 1 is shown as a function of λ, for the following distributions.
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Fig 4. Mean sojourn time jobs as a function of λ for different values of N . We set M = 2,
C1 = 1/5, C2 = 9/5, γ1 = γ2 = 0.5, and d1 = d2 = 2. Routing probabilities for the state
independent scheme and the hybrod SQ(d) scheme are not optimized.

Table 2

Insensitivity of Scheme 1

λ
Mean sojourn time T̄

(Theoretical)

Constant

(Simulation)

Power Law

(Simulation)

0.2 0.8076 0.8106 0.8098

0.3 0.8609 0.8642 0.8640

0.5 0.9809 0.9852 0.9840

0.7 1.1696 1.1759 1.1757

0.8 1.3687 1.3741 1.3740

0.9 1.7531 1.7641 1.7645

1. Constant: We consider job length distribution having the cumulative
distribution given by F (x) = 0 for 0 ≤ x < 1, and F (x) = 1, otherwise.

2. Power law: We consider job length distribution having cumulative dis-
tribution function given by F (x) = 1− 1/4x2 for x ≥ 1

2 and F (x) = 0,
otherwise.

For both distributions we have μ = 1. We choose the following parameter
values M = 2, C1 = 4/3, C2 = 2/3, N = 100, γ1 = γ2 =

1
2 , and d1 = d2 = 2.

We observe that the change in the mean sojourn time of jobs when the
job length distribution type is changed keeping the same mean is insignifi-
cant. The results, therefore, are clear evidences of asymptotic insensitivity
property as discussed in Remark 5.1.
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7. Conclusion. We considered randomized job assignment schemes in
a multi-server system consisting ofN parallel processor sharing servers, cate-
gorized into M (� N) different types according to their processing capacity
or speed. In the proposed schemes, a small number of servers from each
type is sampled uniformly at random at each arrival instant. It was shown
that due to such sampling the schemes achieve the maximal stability region.
Mean field analysis was carried out to show that asymptotic independence
among servers holds even when M is finite and exchangeability holds only
within servers of the same type. The existence and uniqueness of stationary
solution of the mean field and doubly exponentially decreasing nature of the
tail distribution of the number of jobs was established. Numerical studies
have shown that, when the estimates of arrival rates are not available, the
proposed schemes offer simpler alternatives to achieving lower mean sojourn
time of jobs.

APPENDIX A

We will prove Proposition 4.1 only for the system (4.1)–(4.2). The proof
for the system (4.5)–(4.6) follows similarly.

Define θ(x) = [min(x, 1)]+, where [z]+ = max {0, z} and let us consider
the following modification of (4.1)–(4.2):

u(0) = g,(A.1)

u̇(t) = l̂(u(t)),(A.2)

where the mapping l̂ :
(
R
Z+
)M →

(
R
Z+
)M

is given by

l̂
(j)
0 (u) = 0, for j ∈ J ,(A.3)

l̂
(j)
k (u) =

λ

γj

[(
θ
(
u
(j)
k−1

))dj
−
(
θ
(
u
(j)
k

))dj]
+

j−1∏
i=1

(
θ
(
u
(i)
k−1

))di
(A.4)

×
M∏

i=j+1

(
θ
(
u
(i)
k

))di
− μCj

[
θ
(
u
(j)
k

)
−θ
(
u
(j)
k+1

)]
+
, for k ≥ 1, j ∈ J .

Clearly, the right hand side of (4.4) and (A.4) are equal if u ∈ ŪM . Therefore,
the two systems must have identical solutions in ŪM . Also if g ∈ ŪM , then
any solution of the modified system remains within ŪM . This is because

of the facts that if u
(j)
n (t) = u

(j)
n+1(t) for some j, n, t, then l̂

(j)
n (u(t)) ≥ 0

and l̂
(j)
n+1(u(t)) ≤ 0, and if u

(j)
n (t) = 0 for some j, n, t, then l̂

(j)
n (u(t)) ≥ 0.

Hence, to prove the uniqueness of solution of (4.1)–(4.2), we need to show
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that the modified system (A.1)–(A.2) has a unique solution in (RZ+)M . We
now extend the distance metric defined in (2.8) to the space (RZ+)M .

Using the metric defined in (2.8) and the facts that |x+ − y+| ≤ |x− y| for
any x, y ∈ R, |a1bm1 − a2b

m
2 | ≤ |a1 − a2| +m |b1 − b2| for any a1, a2, b1, b2 ∈

[0, 1], and |θ(x)− θ(y)| ≤ |x− y| for any x, y ∈ R we obtain

‖̂l(u)‖ ≤ K1,(A.5)

‖̂l(u)− l̂(w)‖ ≤ K2‖u−w‖,(A.6)

where u,w ∈ (RZ+)M , K1 and K2 are constants defined as K1 =
λ

minj∈J γj
+

μ(maxj∈J Cj) and K2 = 4Mλ
maxj∈J dj
minj∈J γj

+3μ(max1≤j≤M Cj). The uniqueness

now follows from inequalities (A.5) and (A.6) by using Picard’s iteration
technique since (RZ+)M is complete under the metric defined in (2.8).

APPENDIX B

We prove Proposition 4.2 by showing that the generators of the corre-
sponding semigroups converge as N → ∞. We first recollect the following
from [7].

• The generator AN of the semigroup {TN (t)}t≥0 acting on functions

f :
∏M

j=1 Ū
(j)
N → R is given by ANf(g) =

∑
h�=g qgh (f(h)− f(g)),

where qgh, with g,h ∈
∏M

j=1 Ū
(j)
N , denotes the transition rate from

state g to state h.
• The generator A of the semigroup {T(t)}t≥0 acting on functions f :

ŪM → R having bounded partial derivatives is given by Af(g) =

limt↓0
T(t)f(g)−f(g)

t = d
dtf(u(t,g))|t=0.

In the following lemma, we characterize the the generator AN associated
with the process xN (t).

Lemma B.1. Let g ∈
∏M

j=1 Ū
(j)
N be any state of the process xN (t) and

e(n, j) =
(
e
(i)
k

)
k∈Z+,i∈J

be the unit vector with e
(j)
n = 1 and e

(i)
k = 0 if i �= j

and k �= n. Under Scheme 1, the generator AN of the Markov process xN (t)

acting on functions f :
∏M

j=1 Ū
(j)
N → R is given by

(B.1) ANf(g) = Nλ

M∑
j=1

∑
n≥1

[(
g
(j)
n−1

)dj
−
(
g(j)n

)dj] j−1∏
i=1

(
g
(i)
n−1

)di

×
M∏

i=j+1

(
g(i)n

)di [
f(g +

e(n, j)

Nγj
)− f(g)

]
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+ μN
∑
n≥1

M∑
j=1

γjCj

[
g(j)n − g

(j)
n+1

]
×
[
f(g − e(n, j)

Nγj
)− f(g)

]
.

Under Scheme 2, the generator AN of the Markov process xN (t) acting on

functions f :
∏M

j=1 Ū
(j)
N → R is given by

(B.2) ANf(g) = Nλ

M∑
j=1

∑
n≥1

[(
g
(j)
n−1

)dj
−
(
g(j)n

)dj] j−1∏
i=1

(
g
(i)
�n−1�ji

)di

×
M∏

i=j+1

(
g
(i)
�n−1	ji

)di [
f(g +

e(n, j)

Nγj
)− f(g)

]

+ μN
∑
n≥1

M∑
j=1

γjCj

[
g(j)n − g

(j)
n+1

]
×
[
f(g − e(n, j)

Nγj
)− f(g)

]
.

Proof. We only prove the lemma for Scheme 1. For Scheme 2, it can be
shown similarly.

We first consider an arrival joining a server of type j with exactly n−1 un-
finished jobs, when the state of the system is g. This corresponds to the tran-

sition from state g to the state g+ e(n,j)
Nγj

. The term

((
g
(j)
n−1

)dj
−
(
g
(j)
n

)dj)

×
∏j−1

i=1

(
g
(i)
n−1

)di∏M
i=j+1

(
g
(i)
n

)di
denotes the probability with which an ar-

rival joins a type j server with exactly n−1 jobs. This is because a job joins
a server of type j with exactly n − 1 occupancy only when the following
conditions are satisfied:

• Among the dj sampled servers of type j, at least one has exactly n−1
jobs and the rest of them have at least n jobs.

• For each i < j, all the di sampled servers of type i have at least n− 1
jobs.

• For each i > j, all the di servers of type i have at least n jobs.

Since the arrival rate of jobs is Nλ, the rate of the above transition is given
by

(B.3) q
g,g+

e(n,j)
Nγj

= Nλ

[(
g
(j)
n−1

)dj
−
(
g(j)n

)dj] j−1∏
i=1

(
g
(i)
n−1

)di M∏
i=j+1

(
g(i)n

)di
Further, the rate at which jobs depart from a server of type j having exactly

n jobs is μCjNγj

(
g
(j)
n − g

(j)
n+1

)
. The expression (B.1) now follows directly

from the definition of AN .
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We now show that the solutions u(t,g) of (4.1)–(4.2) and (4.5)–(4.6) are
smooth with respect to the initial point g and their partial derivatives are
bounded.

Lemma B.2. For each j, n, j′, n′, i, k, and t ≥ 0, the partial derivatives
∂u(t,g)

∂g
(j)
n

, ∂2u(t,g)

∂g
(j)
n

2 , and ∂2u(t,g)

∂g
(j)
n ∂g

(j′)
n′

exist for g ∈ ŪM and satisfy

(B.4)

∣∣∣∣∣∂u
(i)
k (t,g)

∂g
(j)
n

∣∣∣∣∣ ≤ exp(B1t)

and

(B.5)

∣∣∣∣∣∂
2u

(i)
k (t,g)

∂g
(j)
n

2

∣∣∣∣∣ ,
∣∣∣∣∣∂

2u
(i)
k (t,g)

∂g
(j)
n ∂g

(j′)
n′

∣∣∣∣∣ ≤ B2

B1
(exp(2B1t)− exp(B1t)),

where B1 =
2λ
∑

j∈J dj
minj∈J γj

+ 2μ (maxj∈J Cj), and B2 =
2λ(
∑

j∈J dj)
2

minj∈J γj
.

Proof. The proof follows the same line of arguments as the proof of
Lemma 3.2 of [13]. We omit the details.

Proof of Proposition 4.2. Let Ξ be the set of continuous functions
f : ŪM → R and let D be the set of those f ∈ Ξ for which the derivatives
∂f(g)

∂g
(j)
n

, ∂2f(g)

∂(g
(j)
n )2

, and ∂2f(g)

∂g
(j)
n ∂g

(j′)
n′

exist for all n, n′ ∈ Z+ and j, j′ ∈ J and are

uniformly bounded by some constant B < ∞. Using the metric defined
in (2.8) on ŪM and the sup norm on Ξ we find that D is dense in Ξ. For
f ∈ D we have

Nγj

(
f

(
g +

e(n, j)

Nγj

)
− f(g)

)
→ ∂f(g)

∂g
(j)
n

(B.6)

Nγj

(
f

(
g − e(n, j)

Nγj

)
− f(g)

)
→ −∂f(g)

∂g
(j)
n

.(B.7)

Thus using (B.1) we have that as N → ∞

ANf(g)

(B.8)

→
∑
j∈J

∑
n≥1

λ

γj

[(
g
(j)
n−1

)dj
−
(
g(j)n

)dj] j−1∏
i=1

(
g
(i)
n−1

)di M∏
i=j+1

(
g(i)n

)di (∂f(g)

∂g
(j)
n

)
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− μ
∑
j∈J

∑
n≥1

Cj

[
g(j)n − g

(j)
n+1

](∂f(g)

∂g
(j)
n

)
.

The right hand side of (B.8) can be rewritten as

∑
j∈J

∑
n≥1

(
λ

γj

[(
g
(j)
n−1

)dj
−
(
g(j)n

)dj] j−1∏
i=1

(
g
(i)
n−1

)di M∏
i=j+1

(
g(i)n

)di
(B.9)

− μCj

(
g(j)n − g

(j)
n+1

))
×
(
∂f(g)

∂g
(j)
n

)
,

which coincides with

(B.10)
d

dt
f(u(t,g))|t=0,

where u(t,g) is the solution of (4.1)–(4.2) with u(0) = g.
We know that the semigroups of operators (T(t), t ≥ 0) and (TN (t), t ≥ 0)

corresponding to the processes u(·) and xN (·) are given by

T(t)f(g) = f(u(t,g)),(B.11)

TN (t)f(g) = E[f(xN (t))|xN (0) = g].(B.12)

The generators corresponding to the semigroups T and TN are A and AN ,
respectively, where

(B.13) Af(g) =
d

dt
f(u(t,g))|t=0,

and AN is given by (B.1). Hence, from (B.8), (B.9), (B.10) we have

(B.14) lim
N→∞

ANf = Af

for all f ∈ D.
Define D0 ⊂ D as the set of those functions in D which depend only on

finitely many components un,j . By definition of the metric in 2.8 on ŪM ,
D0 is dense in D and hence in Ξ. Also, it follows from Lemma B.2 that
T(t)f0 ∈ D for f0 ∈ D0 and t ≥ 0. Therefore, by Proposition E.1 we have
that D is the core of A. We also observe that the semigroups (TN (t), t ≥
0) and (T(t), t ≥ 0) are, by definition, strongly continuous, contraction
semigroups on Ξ. These facts together with (B.14) and Theorem E.2 imply
that TN (t)f → T(t)f for all f ∈ Ξ and all t ≥ 0.

Now we notice that T is a Feller semigroup on Ξ. This is because i)
T(t)1 = 1, where 1 is the indicator function on ŪM , ii) by Lemma B.2,
u(t,g) is continuous with respect to initial condition g. Hence, applying
Theorem E.1 we conclude that if xN (0) ⇒ g ∈ ŪM , then xN (·) ⇒ u(·,g) as
N → ∞.
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APPENDIX C

We prove the existence of equilibrium point for Scheme 1. Similar argu-
ments apply for Scheme 2.

The idea is to construct sequences
{
P

(j)
k , k ∈ Z+

}
for j = 1, 2 such that

they satisfy the following three properties

P.1 Equation (4.10) for j = 1, 2.

P.2 P
(j)
k ≥ P

(j)
k+1 ≥ 0 for all k ∈ Z+, j = 1, 2.

P.3 P
(j)
k → 0 as k → ∞ for j = 1, 2.

According to Proposition 4.3, we see that P =
{
P

(j)
k , k ∈ Z+, j ∈ {1, 2}

}
with components P

(j)
k satisfying the above properties, must be an equilib-

rium point of the system (4.1)–(4.2) and also must lie in the space U2. Note

that if (P.1) holds and P
(j)
k ≥ 0 for all k and j, then P

(j)
k ≥ P

(j)
k+1.

We now construct the sequences
{
P

(1)
l (α), l ∈ Z+

}
and

{
P

(2)
l (α), l ∈ Z+

}
as functions of the real variable α as follows:

P
(1)
0 (α) = 1.(C.1)

P
(2)
0 (α) = 1.(C.2)

P
(1)
1 (α) = α.(C.3)

P
(2)
1 (α) = Δ2

(
1− α

Δ1

)
.(C.4)

P
(1)
l+2(α) = P

(1)
l+1(α)−Δ1

((
P

(1)
l (α)

)d1
−
(
P

(1)
l+1(α)

)d1)
(C.5)

×
(
P

(2)
l+1(α)

)d2
, l ≥ 0

P
(2)
l+2(α) = P

(2)
l+1(α)−Δ2

((
P

(2)
l (α)

)d2
−
(
P

(2)
l+1(α)

)d2)
(C.6)

×
(
P

(1)
l (α)

)d1
, l ≥ 0

Combining the above relations we obtain

(C.7)

2∑
j=1

P
(j)
l+1(α)

Δj
=

2∏
j=1

(
P

(j)
l (α)

)dj
, for l ≥ 0

Note that that the sequences
{
P

(1)
l (α), l ∈ Z+

}
and

{
P

(2)
l (α), l ∈ Z+

}
are

constructed such that they satisfy property (P.1). Hence, the the proof will
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be complete if for some α ∈ (0, 1) the properties (P.2) and (P.3) are satisfied.

We first proceed to find α ∈ (0, 1) such that the sequences
{
P

(1)
l (α), l ∈ Z+

}
and

{
P

(2)
l (α), l ∈ Z+

}
are both positive sequences of real numbers in [0, 1].

This will ensure that (P.2) is satisfied.

Note that P
(1)
l (1) = 1 for all l ∈ Z+. Hence, from (C.4) we have P

(2)
1 (1) =

Δ2

(
1− 1

Δ1

)
and from (C.6) we have

(C.8) P
(2)
l+2(1) = P

(2)
l+1(1)−Δ2

((
P

(2)
l (1)

)d2
−
(
P

(2)
l+1(1)

)d2)
for l ≥ 0

Notice that the stability condition (3.2) reduces to

(C.9)
1

Δ1
+

1

Δ2
> 1,

which implies that P
(2)
1 (1) < 1. We claim that there exists some l ≥ 1 such

that P
(2)
l (1) < 0. Let us assume this is not true. Therefore, P

(2)
l (1) ≥ 0 for

all l ≥ 0. By (C.8), this implies that
{
P

(2)
l (1), l ≥ 0

}
is a non-decreasing

sequence of numbers in [0, 1). Hence by monotone convergence theorem

liml→∞ P
(2)
l (1) exists. Let this limit be denoted by β, where 0 ≤ β < 1.

Thus, adding (C.8) for l ≥ 0 and using liml→∞ P
(2)
l (1) = β we obtain(

1− 1

Δ1

)
=

β

Δ2
+ 1− βd2

> β

(
1− 1

Δ1

)
+ 1− βd2 .

Hence,
(
1− 1

Δ1

)
> 1−βd2

1−β ≥ 1. This is a contradiction since Δ1 > 0. Hence,

there exists l ≥ 1 such that P
(2)
l (1) < 0.

Observe that P
(2)
l

(
Δ1

(
1− 1

Δ2

))
= 1 for all l ≥ 0. Hence, with same line

of arguments as above, it can be shown that there exists l ≥ 1 such that

P
(1)
l

(
Δ1

(
1− 1

Δ2

))
< 0.

Now from (C.4) and (C.6) it is easily seen that P
(2)
l (0) > 0 for all l ≥ 0.

From the same relations we also observe that P
(2)
l

(
Δ1

(
1− 1

Δ2

))
= 1 > 0

for all l ≥ 0. Combining the two we have

(C.10) P
(2)
l

(
max

(
0,Δ1

(
1− 1

Δ2

)))
> 0
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Further, observe that P
(2)
1 (Δ1) = 0. Hence, there must exist at least one

root of P
(2)
1 (α) in the following range

(C.11) α ∈
(
max

(
0,Δ1

(
1− 1

Δ2

))
,Δ1

]
.

Let r
(2)
1 denote the minimum root of P

(2)
1 (α) in the above range. Therefore,

in the range

(C.12) α ∈
(
max

(
0,Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
1

) ]
,

we must have P
(2)
1 (α) ≥ 0. (Note that the right limit can be combined

with 1 because of the minimality of r
(2)
1 ). Putting l = 0, α = r

(2)
1 in (C.6)

we observe that P
(2)
2

(
r
(2)
1

)
< 0. Hence, using the same line arguments we

conclude that in the range

(C.13) α ∈
(
max

(
0,Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
2

) ]
,

both P
(2)
1 (α), P

(2)
2 (α) ≥ 0, where r

(2)
2 denotes the minimum root of P

(2)
2 (α)

in the range defined in (C.12). Therefore by (C.6) we also have P
(2)
1 (α) ≥

P
(2)
2 (α) > 0 in the above range. Repeating the same argument again for

P
(2)
3 (α) we find that P

(2)
1 (α) ≥ P

(2)
2 (α) ≥ P

(2)
3 (α) ≥ 0 holds in the range

(C.14) α ∈
(
max

(
0,Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
3

) ]
,

where r
(2)
3 denotes the minimum root of P

(2)
3 (α) in the range defined

in (C.13).

Trivially, we have P
(1)
1 (α) > 0 in the range defined in (C.14). Now

from (C.5) we have P
(1)
2 (0) = −Δ1Δ

d2
2 < 0. Also, from definition of r

(2)
3

we know that P
(2)
3 (r

(2)
3 ) = 0. Now, by putting α = r

(2)
3 and l = 1 in (C.6)

we obtain

P
(2)
2 (r

(2)
3 ) = Δ2

[(
P

(2)
1 (r

(2)
3 )
)d2

−
(
P

(2)
2 (r

(2)
3 )
)d2](

r
(2)
3

)d1
≤ Δ2

(
P

(2)
1 (r

(2)
3 )
)d2 (

r
(2)
3

)d1
(since P

(2)
2 (r

(2)
3 ) ≥ 0)

Again, by putting l = 2 and α = r
(2)
3 in (C.7) and using the above we obtain

P
(1)
2 (r

(2)
3 ) ≥ 0. Therefore, there exists at least one root of P

(1)
2 (α) in the



122 A. MUKHOPADHYAY, A. KARTHIK, AND R. R. MAZUMDAR

interval ( 0, r
(2)
3 ]. Denote the maximum of all such roots to be r

(1)
2 . Hence,

in the range

(C.15) α ∈
[
max

(
r
(1)
2 ,Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
3

) ]
,

we have P
(1)
1 (α) ≥ P

(1)
2 (α) ≥ 0 along with P

(2)
1 (α) ≥ P

(2)
2 (α) ≥ P

(2)
3 (α) ≥ 0.

Again from (C.5) we observe that P
(1)
3 (r

(1)
2 ) < 0. Further, putting l = 3 and

α = r
(2)
3 in (C.7) we obtain P

(1)
3 (r

(2)
3 ) ≥ 0. Thus, there must be at least one

root of P
(1)
3 (α) in the range ( r

(1)
2 , r

(2)
3 ]. Let r

(1)
3 denote the maximum root

in the interval. Hence, in the interval

(C.16) α ∈
[
max

(
r
(1)
3 ,Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
3

) ]
,

we have P
(1)
1 (α) ≥ P

(1)
2 (α) ≥ P

(1)
3 (α) ≥ 0 along with P

(2)
1 (α) ≥ P

(2)
2 (α) ≥

P
(2)
3 (α) ≥ 0. Similarly, from (C.5) we have P

(1)
4 (r

(1)
3 ) < 0 and from (C.6) we

have P
(1)
4 (r

(2)
3 ) ≥ 0. Thus, there must be at least one root of P

(1)
4 (α) in the

range ( r
(1)
3 , r

(2)
3 ]. Denote the maximum of all such roots by r

(1)
4 . Hence, in

the interval

(C.17) α ∈
[
max

(
r
(1)
4 ,Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
3

) ]
,

we have P
(1)
1 (α) ≥ P

(1)
2 (α) ≥ P

(1)
3 (α) ≥ P

(1)
4 (α) ≥ 0 and P

(2)
1 (α) ≥

P
(2)
2 (α) ≥ P

(2)
3 (α) ≥ 0.

Using the same line of arguments as above the following inductive hy-

pothesis can be proved: If, for k ≥ 0, P
(1)
1 (α) ≥ P

(1)
2 (α) . . . ≥ P

(1)
4+3k(α) ≥ 0

and P
(2)
1 (α) ≥ P

(2)
2 (α) . . . ≥ P

(1)
3+3k(α) ≥ 0 hold in the range

(C.18) α ∈
[
max

(
r
(1)
4+3k,Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
3+3k

) ]
,

then P
(1)
1 (α) ≥ P

(1)
2 (α) . . . ≥ P

(1)
4+3(k+1)(α) ≥ 0 and P

(2)
1 (α) ≥ P

(2)
2 (α) . . . ≥

P
(1)
3+3(k+1)(α) ≥ 0 hold in the range

(C.19) α ∈
[
max

(
r
(1)
4+3(k+1),Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
3+3(k+1)

) ]
,

and the interval in (C.19) is included in the interval in (C.18).
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The decreasing sequence of compact intervals

(C.20)

[
max

(
r
(1)
4+3k,Δ1

(
1− 1

Δ2

))
,min

(
1, r

(2)
3+3k

) ]
, for k ≥ 0

eventually become strict subsets of the interval [0, 1] as discussed in the
beginning. Further, the intersection of all such compact intervals must be
non-empty due to the Cantor’s intersection theorem. Hence, we have shown

that there exists α ∈ (0, 1) such that the sequences
{
P

(1)
l (α), l ∈ Z+

}
and{

P
(2)
l (α), l ∈ Z+

}
are both positive non-increasing sequences of real num-

bers in [0, 1].
We now proceed to show that the above sequences satisfy property (P.3).

Let liml→∞ P
(1)
l (α) = ξ1 ≥ 0 and liml→∞ P

(2)
l (α) = ξ2 ≥ 0, where α is

chosen such that both sequences become positive and non-increasing. Now,
taking limit of (C.7) as l → ∞ we have

(C.21)
2∑

j=1

ξj
Δj

=
2∏

j=1

(ξj)
dj .

Now using the stability criterion and the fact that 0 ≤ ξ1, ξ2 ≤ 1 we have

1

Δ1
+

1

Δ2
> 1

⇒ ξ2
Δ1

+
ξ2
Δ2

≥ ξ2 ≥ ξd22

with equality holding if and only if ξ2 = 0. Further, we have

1

Δ1
+

ξ2
Δ2

≥ ξ2
Δ1

+
ξ2
Δ2

≥ ξd22

Hence, by multiplying both sides with ξ1 we have

ξ1
Δ1

+
ξ1ξ2
Δ2

≥ ξ1ξ
d2
2 ≥ ξd11 ξd22 ,

with equality if and only if ξ1 = ξ2 = 0. Again, since ξ1 ≤ 1 we have

ξ1
Δ1

+
ξ2
Δ2

≥ ξ1
Δ1

+
ξ1ξ2
Δ2

≥ ξ1ξ
d2
2 ≥ ξd11 ξd22 ,

Hence, we have shown

(C.22)
ξ1
Δ1

+
ξ2
Δ2

≥ ξd11 ξd22

with equality holding if and only if ξ1 = ξ2 = 0. Hence, for (C.21) to hold we
must have ξ1 = ξ2 = 0. This proves (P.3) and thus completes the proof.
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APPENDIX D

To prove Theorem 4.3, we first state the following lemma. We will write

g ≤ g′ to mean that g
(j)
n ≤ g′(j)n holds for all n ∈ Z+ and j ∈ J .

Lemma D.1. If g ≤ g′ holds, for g,g′ ∈ ŪM , then u(t,g) ≤ u(t,g′)
holds for all t ≥ 0.

Proof. The proof is essentially the same as that of Lemma 3.3 of [13]
and hence omitted.

We define v
(j)
n (t,g) =

∑
k≥n u

(j)
k (t,g) and vn(t,g) =

∑
j∈J γjv

(j)
n (t,g)

for each n ≥ 1 and j ∈ J . Further, v
(j)
n (g) =

∑
k≥n g

(j)
k and vn(g) =∑

j∈J γjv
(j)
n (g) for each n ≥ 1 and j ∈ J .

Lemma D.2. If g ∈ UM , then u(t,g) ∈ UM for all t ≥ 0 and

(D.1)
dvn(t,g)

dt
= λ

⎛
⎝ M∏

j=1

(
u
(j)
n−1(t,g)

)dj
−

M∑
j=1

u
(j)
n (t,g)

Δj

⎞
⎠ for all n ≥ 1.

In particular,

(D.2)
dv1(t,g)

dt
= λ

⎛
⎝1−

M∑
j=1

u
(j)
1 (t,g)

Δj

⎞
⎠

Proof. Suppose that u(t,g) ∈ UM holds for all t ≤ τ . Hence, v1(τ,g) <

∞ and limn→∞ u
(j)
n (τ,g) = 0 for each j ∈ J . Summing (4.3) first over all

k ≥ n and then over all j ∈ J yields

(D.3)
dvn(t,g)

dt

∣∣∣∣
t=τ

= λ

⎛
⎝ M∏

j=1

(
u
(j)
n−1(τ,g)

)dj
−

M∑
j=1

u
(j)
n (τ,g)

Δj

⎞
⎠ < ∞,

for all n ≥ 1. Hence, for all sufficiently small h > 0, we have vn(τ+h,g) < ∞
for all n ≥ 1. This implies that u(τ + h,g) ∈ UM for all sufficiently small
h > 0. This fact along with g = u(0,g) ∈ UM implies that u(t,g) ∈ UM

for all t ≥ 0. Further, (D.1) can be obtained by summing (4.3) first over all
k ≥ n and then over all j ∈ J .
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Proof of Theorem 4.3. Clearly, Lemma D.1 implies the following

(D.4) u(t,min(g,P)) ≤ u(t,g) ≤ u(t,max(g,P))

Hence, to prove (4.15), it is sufficient to show that the convergence holds for
g ≥ P and for g ≤ P.

We first need to check that for each such g, the quantity v1(t,g) (and
hence also vn(t,g) for n > 1) is bounded uniformly in t. If g ≤ P, then by
Lemma D.1 we have u(t,g) ≤ u(t,P) = P for all t ≥ 0. Hence, v1(t,g) ≤
v1(P).

On the other hand, if g ≥ P, then by Lemma D.1 u(t,g) ≥ u(t,P) = P.
Hence, we have

(D.5)
M∑
j=1

u
(j)
1 (t,g)

Δj
≥

M∑
j=1

P
(j)
1

Δj
= 1

Thus, from (D.2) we have dv1(t,g)
dt ≤ 0. Hence, we have 0 ≤ v1(t,g) ≤ v1(g)

for all t ≥ 0.
Since the derivative of u

(j)
n (t) is bounded for all j ∈ J , the convergence

u(t,g) → P will follow from

(D.6)

∫ ∞

0

(
u(j)n (t,g)− P (j)

n

)
dt < ∞, j ∈ J , n ≥ 1

in the case g ≥ P, and from

(D.7)

∫ ∞

0

(
P (j)
n − u(j)n (t,g)

)
dt < ∞, j ∈ J , n ≥ 1

in the case g ≤ P. Both the bounds can be shown similarly. We discuss the
proof of (D.6).

To prove (D.6) it is sufficient to show that

(D.8)

∫ ∞

0

M∑
j=1

(
u
(j)
n (t,g)− P

(j)
n

)
Δj

dt < ∞,

for all n ≥ 1. We will use induction starting with n = 1. Using (D.2), we
have

∫ τ

0

M∑
j=1

(
u
(j)
1 (t,g)− P

(j)
1

)
Δj

dt =

∫ τ

0

M∑
j=1

(
u
(j)
1 (t,g)

Δj
− 1

)
dt
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= − 1

λ

∫ τ

0

dv1(t,g)

dt
dt

=
1

λ
(v1(g)− v1(τ,g)).

Since the right hand side is bounded by a constant for all τ , the integral on
the left hand side must converge as τ → ∞.

Now assume that (D.6) holds for all n ≤ L − 1. We have from (D.1)
and (4.12)

vL(0,g)− vL(τ,g) = −
∫ τ

0

dvL(t,g)

dt
dt

= λ

∫ τ

0

⎛
⎝ M∑

j=1

u
(j)
L (t,g)

Δj
−

M∏
j=1

(
u
(j)
L−1(t,g)

)dj⎞⎠ dt

= λ

∫ τ

0

M∑
j=1

(
u
(j)
L (t,g)− P

(j)
L

)
Δj

dt

+ λ

∫ τ

0

⎛
⎝ M∑

j=1

P
(j)
L

Δj
−

M∏
j=1

(
u
(j)
L−1(t,g)

)dj⎞⎠ dt

= λ

∫ τ

0

M∑
j=1

(
u
(j)
L (t,g)− P

(j)
L

)
Δj

dt

− λ

∫ τ

0

⎛
⎝ M∏

j=1

(
u
(j)
L−1(t,g)

)dj
−

M∏
j=1

(
P

(j)
L−1

)dj⎞⎠ dt

By the induction hypothesis, the last integral on the right hand side con-
verges as τ → ∞. The left hand side also is uniformly bounded. Hence, the
first integral on the left hand side also must converge as required.

APPENDIX E

In this appendix, we review some of the key definitions and results on
the weak convergence of Markov processes and their corresponding operator
semigroups. We first define transition function for a Markov processes.

Definition E.1. A function P (t, x,Γ) defined on [0,∞)×E ×B(E) is
said to be a time homogeneous transition function if the following conditions
are satisfied
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1. For each (t, x) ∈ [0,∞) × S, we have P (t, x, ·) ∈ P(E), i.e., P (t, x, ·)
is a Borel probability measure on E.

2. For each x ∈ E, we have P (0, x, ·) = δx(·), where δx is the Dirac
measure centered around x.

3. For each t, s ≥ 0, x ∈ E, and Γ ∈ B(E), we have

(E.1) P (t+ s, x,Γ) =

∫
P (s, y,Γ)P (t, x, dy).

A stochastic process X with state space E is said to be a time homoge-
neous Markov process with transition function P (t, x,Γ) if for all s, t ≥ 0
and bounded real valued Borel measurable function f on E the following
holds

(E.2) E [f(X(t+ s)|σ(X(u), 0 ≤ u ≤ t)] =

∫
f(y)P (s,X(t), dy).

With a time-homogeneous Markov process one can associate a group of oper-
ators satisfying the semigroup property. The precise definition is given below

Definition E.2. Let X be a Markov process with transition function
P (t, x,Γ). Define an indexed family T = {T (t), t ≥ 0} of bounded linear
operators on C̄(E) as

(E.3) T (t)f(x) =

∫
f(y)P (t, x, dy),

for each f ∈ C̄(E). The family T = {T (t), t ≥ 0} is said to be the semigroup
of operators corresponding to the Markov process X since it satisfies the
semigroup property, i.e., T (s+t) = T (s)◦T (t), where ◦ denotes composition
of operators.

Clearly, T (0) = I where I denotes the identity operator on C̄(E). The
semigroup of operators T = {T (t), t ≥ 0} is called a contraction semigroup
if ‖T (t)f‖∞ ≤ ‖f‖∞ for all t ≥ 0 and f ∈ C̄(E). Note that the semigroup
T = {T (t), t ≥ 0} corresponding to the Markov process X is by definition a
contraction semigroup. We also note that if f ∈ C̄(E) is such that f ≥ 0 then
by definition T (t)f ≥ 0 for all t ≥ 0. This property is called the positivity
of the semigroup T . The semigroup T = {T (t), t ≥ 0} corresponding to the
Markov process X is called Feller if

1. limt↓0 T (t)f = f for all f ∈ C̄(E). (Strong continuity)
2. T (t)1 = 1 for all t ≥ 0, where 1(x) = 1 for all x ∈ E.
3. For each t ≥ 0 and f ∈ C̄(E), we have T (t)f ∈ C̄(E).
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We now state a key result which provides a sufficient condition for sequence
of Markov processes to converge to a limiting Markov process in terms of
their corresponding operator semigroups. We shall be using this result re-
peatedly in this dissertation.

Theorem E.1 ([7], p. 172, Theorem 2.11). Let (E, r) be a compact met-
ric space and X be a Markov process having sample paths in DE [0,∞) with
initial distribution ν ∈ P(E). Let T = {T (t), t ≥ 0} denote the semigroup
of operators corresponding to the process X. Assume that T is Feller. For
each n ≥ 1, let Xn be a Markov process with operator semigroup Tn =
{Tn(t), t ≥ 0} and having sample paths in DEn [0,∞), where En ⊂ E. Sup-
pose that the following holds

(E.4) lim
n→∞

sup
x∈En

|Tn(t)f(x)− T (t)f(x)| = 0,

for each f ∈ C̄(E) and t ≥ 0, i.e., Tnf → Tf for each f ∈ C̄(E). If
{Xn(0), n ≥ 1} converges in distribution to ν ∈ P(E), then Xn ⇒ X.

Hence, the above theorem states that a sequence of Markov processes
converge to a limiting Markov process if the corresponding operator semi-
groups and the initial distributions converge. An effective way of establishing
convergence of operator semigroups is by showing convergence of their cor-
responding generators which are defined below.

Definition E.3. The (infinitesimal) generator of a semigroup T =
{T (t), t ≥ 0} is a linear operator A on C̄(E) defined as

(E.5) Af = lim
t↓0

T (t)f − f

t
,

for all f ∈ C̄(E) such that the above limit exists. The space on which the A
is defined is called the domain D(A) of A. A subspace D of D(A) is said to
be the core of A if the closure of the restriction of A to D is equal to A.

The core of the generator A of semigroup T = {T (t), t ≥ 0} can be iden-
tified using the following proposition.

Proposition E.1 ([7], p. 17, Proposition 3.3). Let A be the generator
of a strongly continuous contraction semigroup {T (t), t ≥ 0} on C̄(E). Let
D0 and D be dense subspaces of C̄(E) with D0 ⊂ D ⊂ D(A), where D(A)
is the domain of A. If T (t) : D0 → D for all t ≥ 0, then D is the core of A.
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Finally, we provide the necessary and sufficient condition for convergence
of a sequence of operator semigroups in terms of their corresponding gener-
ators.

Theorem E.2 ([7], p. 28, Theorem 6.1). For n ∈ N, let Tn and T be
strongly continuous contraction semigroups on C̄(E) with generators An and
A, respectively. Let D ⊂ D(A) ⊂ C̄(E) be the core of A. Then the following
statements are equivalent

(i) For each f ∈ C̄(E), Tn(t)f → T (t)f for all t ≥ 0, uniformly on
bounded intervals.

(ii) For each f ∈ C̄(E), Tn(t)f → T (t)f for all t ≥ 0.
(iii) For each f ∈ D, Anf → Af .
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