139 research outputs found
Emerging Techniques in Breast MRI
As indicated throughout this chapter, there is a constant effort to move to more sensitive, specific, and quantitative methods for characterizing breast tissue via magnetic resonance imaging (MRI). In the present chapter, we focus on six emerging techniques that seek to quantitatively interrogate the physiological and biochemical properties of the breast. At the physiological scale, we present an overview of ultrafast dynamic contrast-enhanced MRI and magnetic resonance elastography which provide remarkable insights into the vascular and mechanical properties of tissue, respectively. Moving to the biochemical scale, magnetization transfer, chemical exchange saturation transfer, and spectroscopy (both “conventional” and hyperpolarized) methods all provide unique, noninvasive, insights into tumor metabolism. Given the breadth and depth of information that can be obtained in a single MRI session, methods of data synthesis and interpretation must also be developed. Thus, we conclude the chapter with an introduction to two very different, though complementary, methods of data analysis: (1) radiomics and habitat imaging, and (2) mechanism-based mathematical modeling
Signatures of granular microstructure in dense shear flows
Granular materials react to shear stresses differently than do ordinary
fluids. Rather than deforming uniformly, materials such as dry sand or
cohesionless powders develop shear bands: narrow zones containing large
relative particle motion leaving adjacent regions essentially rigid[1,2,3,4,5].
Since shear bands mark areas of flow, material failure and energy dissipation,
they play a crucial role for many industrial, civil engineering and geophysical
processes[6]. They also appear in related contexts, such as in lubricating
fluids confined to ultra-thin molecular layers[7]. Detailed information on
motion within a shear band in a three-dimensional geometry, including the
degree of particle rotation and inter-particle slip, is lacking. Similarly,
only little is known about how properties of the individual grains - their
microstructure - affect movement in densely packed material[5]. Combining
magnetic resonance imaging, x-ray tomography, and high-speed video particle
tracking, we obtain the local steady-state particle velocity, rotation and
packing density for shear flow in a three-dimensional Couette geometry. We find
that key characteristics of the granular microstructure determine the shape of
the velocity profile.Comment: 5 pages, incl. 4 figure
- …