37 research outputs found

    Caution, "normal" BMI: health risks associated with potentially masked individual underweight - EPMA position paper 2021

    Get PDF
    An increasing interest in a healthy lifestyle raises questions about optimal body weight. Evidently, it should be clearly discriminated between the standardised "normal" body weight and individually optimal weight. To this end, the basic principle of personalised medicine "one size does not fit all" has to be applied. Contextually, "normal" but e.g. borderline body mass index might be optimal for one person but apparently suboptimal for another one strongly depending on the individual genetic predisposition, geographic origin, cultural and nutritional habits and relevant lifestyle parameters - all included into comprehensive individual patient profile. Even if only slightly deviant, both overweight and underweight are acknowledged risk factors for a shifted metabolism which, if being not optimised, may strongly contribute to the development and progression of severe pathologies. Development of innovative screening programmes is essential to promote population health by application of health risks assessment, individualised patient profiling and multi-parametric analysis, further used for cost-effective targeted prevention and treatments tailored to the person. The following healthcare areas are considered to be potentially strongly benefiting from the above proposed measures: suboptimal health conditions, sports medicine, stress overload and associated complications, planned pregnancies, periodontal health and dentistry, sleep medicine, eye health and disorders, inflammatory disorders, healing and pain management, metabolic disorders, cardiovascular disease, cancers, psychiatric and neurologic disorders, stroke of known and unknown aetiology, improved individual and population outcomes under pandemic conditions such as COVID-19. In a long-term way, a significantly improved healthcare economy is one of benefits of the proposed paradigm shift from reactive to Predictive, Preventive and Personalised Medicine (PPPM/3PM). A tight collaboration between all stakeholders including scientific community, healthcare givers, patient organisations, policy-makers and educators is essential for the smooth implementation of 3PM concepts in daily practice

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Fibroblasts from patients with major depressive disorder show distinct transcriptional response to metabolic stressors

    Get PDF
    Major depressive disorder (MDD) is increasingly viewed as interplay of environmental stressors and genetic predisposition, and recent data suggest that the disease affects not only the brain, but the entire body. As a result, we aimed at determining whether patients with major depression have aberrant molecular responses to stress in peripheral tissues. We examined the effects of two metabolic stressors, galactose (GAL) or reduced lipids (RL), on the transcriptome and miRNome of human fibroblasts from 16 pairs of patients with MDD and matched healthy controls (CNTR). Our results demonstrate that both MDD and CNTR fibroblasts had a robust molecular response to GAL and RL challenges. Most importantly, a significant part (messenger RNAs (mRNAs): 26-33%; microRNAs (miRNAs): 81-90%) of the molecular response was only observed in MDD, but not in CNTR fibroblasts. The applied metabolic challenges uncovered mRNA and miRNA signatures, identifying responses to each stressor characteristic for the MDD fibroblasts. The distinct responses of MDD fibroblasts to GAL and RL revealed an aberrant engagement of molecular pathways, such as apoptosis, regulation of cell cycle, cell migration, metabolic control and energy production. In conclusion, the metabolic challenges evoked by GAL or RL in dermal fibroblasts exposed adaptive dysfunctions on mRNA and miRNA levels that are characteristic for MDD. This finding underscores the need to challenge biological systems to bring out disease-specific deficits, which otherwise might remain hidden under resting conditions

    Telomere shortening in leukocyte subpopulations in depression

    Get PDF
    Background Telomere shortening is a normal age-related process. However, premature shortening of telomeres in leukocytes – as has been reported in depression – may increase the risk for age-related diseases. While previous studies investigated telomere length in peripheral blood mononuclear cells (PBMCs) as a whole, this study investigated specific changes in the clonal composition of white blood cells of the adaptive immune system (CD4+ helper and CD8+ cytotoxic T lymphocytes, and CD20+ B lymphocytes). Methods Forty-four females with a history of unipolar depression were investigated and compared to fifty age-matched female controls. Telomere lengths were compared between three groups: 1) individuals with a history of depression but currently no clinically relevant depressive symptoms, 2) individuals with a history of depression with relevant symptoms of depression, and 3) healthy age-matched controls. Telomere length was assessed using quantitative fluorescence in situ hybridization (qFISH). Results Both groups with a history of unipolar depression (with and without current depressive symptoms) showed significantly shorter telomeres in all three lymphocyte subpopulations. The effect was stronger in CD8+ and CD20+ cells than in CD4+ cells. Individuals with a history of depression and with (without) current symptoms exhibited a CD8+ telomere length shortening corresponding to an age differential of 27.9 (25.3) years. Conclusions A history of depression is associated with shortened telomeres in the main effector populations of the adaptive immune system. Shorter telomeres seem to persist in individuals with lifetime depression independently of the severity of depressive symptoms. CD8+ cytotoxic T cells and CD20+ B cells seem to be particularly affected in depression. The total number of depressive episodes did not influence telomere length in the investigated adaptive immune cell populations

    Mitochondrial respiration in peripheral blood mononuclear cells correlates with depressive subsymptoms and severity of major depression

    No full text
    Mitochondrial dysfunction might have a central role in the pathophysiology of depression. Phenotypically, depression is characterized by lack of energy, concentration problems and fatigue. These symptoms might be partially explained by reduced availability of adenosine triphosphate (ATP) as a consequence of impaired mitochondrial functioning. This study investigated mitochondrial respiration in peripheral blood mononuclear cells (PBMCs), an established model to investigate the pathophysiology of depression. Mitochondrial respiration was assessed in intact PBMCs in 22 individuals with a diagnosis of major depression (MD) compared with 22 healthy age-matched controls using high-resolution respirometry. Individuals with MD showed significantly impaired mitochondrial functioning: routine and uncoupled respiration as well as spare respiratory capacity, coupling efficiency and ATP turnover-related respiration were significantly lower in the MD compared with the control group. Furthermore, mitochondrial respiration was significantly negatively correlated with the severity of depressive symptoms, in particular, with loss of energy, difficulties concentrating and fatigue. The results suggest that mitochondrial dysfunction contributes to the biomolecular pathophysiology of depressive symptoms. The decreased immune capability observed in MD leading to a higher risk of comorbidities could be attributable to impaired energy supply due to mitochondrial dysfunction. Thus mitochondrial respiration in PBMCs and its functional consequences might be an interesting target for new therapeutical approaches in the treatment of MD and immune-related comorbidities

    The effects of childhood maltreatment on epigenetic regulation of stress-response associated genes: an intergenerational approach

    No full text
    While biological alterations associated with childhood maltreatment (CM) have been found in affected individuals, it remains unknown to what degree these alterations are biologically transmitted to the next generation. We investigated intergenerational effects of maternal CM on DNA methylation and gene expression in N=113 mother-infant dyads shortly after parturition, additionally accounting for the role of the FKBP5 rs1360780 genotype. Using mass array spectrometry, we assessed the DNA methylation of selected stress-response-associated genes (FK506 binding protein 51 [FKBP5], glucocorticoid receptor [NR3C1], corticotropin-releasing hormone receptor 1 [CRHR1]) in isolated immune cells from maternal blood and neonatal umbilical cord blood. In mothers, CM was associated with decreased levels of DNA methylation of FKBP5 and CRHR1 and increased NR3C1 methylation, but not with changes in gene expression profiles. Rs1360780 moderated the FKBP5 epigenetic CM-associated regulation profiles in a gene x environment interaction. In newborns, we found no evidence for any intergenerational transmission of CM-related methylation profiles for any of the investigated epigenetic sites. These findings support the hypothesis of a long-lasting impact of CM on the biological epigenetic regulation of stress-response mediators and suggest for the first time that these specific epigenetic patterns might not be directly transmitted to the next generation
    corecore