35 research outputs found

    MutSβ exceeds MutSα in dinucleotide loop repair

    Get PDF
    The target substrates of DNA mismatch recognising factors MutSalpha (MSH2+MSH6) and MutSbeta (MSH2+MSH3) have already been widely researched. However, the extent of their functional redundancy and clinical substance remains unclear. Mismatch repair (MMR)-deficient tumours are strongly associated with microsatellite instability (MSI) and the degree and type of MSI seem to be dependent on the MMR gene affected, and is linked to its substrate specificities. Deficiency in MSH2 and MSH6 is associated with both mononucleotide and dinucleotide repeat instability. Although no pathogenic MSH3 mutations have been reported, its deficiency is also suggested to cause low dinucleotide repeat instability

    Harnessing the potential of ligninolytic enzymes for lignocellulosic biomass pretreatment

    Get PDF
    Abundant lignocellulosic biomass from various industries provides a great potential feedstock for the production of value-added products such as biofuel, animal feed, and paper pulping. However, low yield of sugar obtained from lignocellulosic hydrolysate is usually due to the presence of lignin that acts as a protective barrier for cellulose and thus restricts the accessibility of the enzyme to work on the cellulosic component. This review focuses on the significance of biological pretreatment specifically using ligninolytic enzymes as an alternative method apart from the conventional physical and chemical pretreatment. Different modes of biological pretreatment are discussed in this paper which is based on (i) fungal pretreatment where fungi mycelia colonise and directly attack the substrate by releasing ligninolytic enzymes and (ii) enzymatic pretreatment using ligninolytic enzymes to counter the drawbacks of fungal pretreatment. This review also discusses the important factors of biological pretreatment using ligninolytic enzymes such as nature of the lignocellulosic biomass, pH, temperature, presence of mediator, oxygen, and surfactant during the biodelignification process

    A novel combination of prosthetic groups in a fungal laccase, PQQ and two copper atoms

    Get PDF
    AbstractExtracellular laccase (benzenediol:oxygen oxidoreductase EC 1.10.3.2) from the lignin-degrading fungus, Phlebia radiata, was shown to contain a novel combination of electron carriers as its prosthetic groups. In addition to two copper atoms per enzyme molecule, one molecule of PQQ was included as a cofactor. The EPR spectrum exhibits features of type 1 and type 2 copper atoms. In the enzymatic reaction 4 molecules of lignin model compound, coniferyl alcohol, are oxidized per molecule of oxygen reduced to water. During the reaction coniferyl alcohol is transformed to dilignols
    corecore