35 research outputs found

    A Hartree-Fock Study of Persistent Currents in Disordered Rings

    Full text link
    For a system of spinless fermions in a disordered mesoscopic ring, interactions can give rise to an enhancement of the persistent current by orders of magnitude. The increase in the current is associated with a charge reorganization of the ground state. The interaction strength for which this reorganization takes place is sample-dependent and the log-averages over the ensemble are not representative. In this paper we demonstrate that the Hartree-Fock method closely reproduces results obtained by exact diagonalization. For spinless fermions subject to a short-range Coulomb repulsion U we show that due to charge reorganization the derivative of the persistent current is a discontinuous function of U. Having established that the Hartree-Fock method works well in one dimension, we present corresponding results for persistent currents in two coupled chains.Comment: 4 pages, 6 figures, Submitted to Phys. Rev.

    The Effect of Surface Roughness on the Universal Thermal Conductance

    Get PDF
    We explain the reduction of the thermal conductance below the predicted universal value observed by Schwab et al. in terms of the scattering of thermal phonons off surface roughness using a scalar model for the elastic waves. Our analysis shows that the thermal conductance depends on two roughness parameters: the roughness amplitude δ\delta and the correlation length aa. At sufficiently low temperatures the conductance decrease from the universal value quadratically with temperature at a rate proportional to δ2a\delta ^{2}a. Values of δ\delta equal to 0.22 and aa equal to about 0.75 of the width of the conduction pathway give a good fit to the data.Comment: 10 pages, 5 figures. Ref. added, typo correcte

    Temperature and Field Dependence of the Mobility in Liquid-Crystalline Conjugated Polymer Films

    Full text link
    The transport properties of organic light-emitting diodes in which the emissive layer is composed of conjugated polymers in the liquid-crystalline phase have been investigated. We have performed simulations of the current transient response to an illumination pulse via the Monte Carlo approach, and from the transit times we have extracted the mobility of the charge carriers as a function of both the electric field and the temperature. The transport properties of such films are different from their disordered counterparts, with charge carrier mobilities exhibiting only a weak dependence on both the electric field and temperature. We show that for spatially ordered polymer films, this weak dependence arises for thermal energy being comparable to the energetic disorder, due to the combined effect of the electrostatic and thermal energies. The inclusion of spatial disorder, on the other hand, does not alter the qualitative behaviour of the mobility, but results in decreasing its absolute value.Comment: 9 pages, 8 figures, submitted to Phys. Rev.

    Ballistic thermal conductance limited by phonon roughness scattering: A comparison of power-law and Gaussian roughness

    Get PDF
    In this work, we have investigated the influence of power-law roughness on the ballistic thermal conductance KTH for a nanosized beam adiabatically connected between two heat reservoirs. The sideways wall beam roughness is assumed to be power-law type, which is described by the roughness amplitude w, the in-plane roughness correlation length ξ and the roughness exponent 0≤H≤1. Distinct differences occur in between power-law and Gaussian wall roughness. For power-law roughness with low roughness exponents H (<0.5), the influence of phonon scattering can be rather destructive leading to significant deviations from the universal conductance value for flat beam walls. On the other hand for large roughness exponents (H>0.5) the conductance drop is significantly smaller than that of Gaussian roughness assuming similar roughness ratios w/ξ.

    Transport Properties of Highly Aligned Polymer Light-Emitting-Diodes

    Full text link
    We investigate hole transport in polymer light-emitting-diodes in which the emissive layer is made of liquid-crystalline polymer chains aligned perpendicular to the direction of transport. Calculations of the current as a function of time via a random-walk model show excellent qualitative agreement with experiments conducted on electroluminescent polyfluorene demonstrating non-dispersive hole transport. The current exhibits a constant plateau as the charge carriers move with a time-independent drift velocity, followed by a long tail when they reach the collecting electrode. Variation of the parameters within the model allows the investigation of the transition from non-dispersive to dispersive transport in highly aligned polymers. It turns out that large inter-chain hopping is required for non-dispersive hole transport and that structural disorder obstructs the propagation of holes through the polymer film.Comment: 4 pages, 5 figure

    Mesoscopic Electron and Phonon Transport through a Curved Wire

    Full text link
    There is great interest in the development of novel nanomachines that use charge, spin, or energy transport, to enable new sensors with unprecedented measurement capabilities. Electrical and thermal transport in these mesoscopic systems typically involves wave propagation through a nanoscale geometry such as a quantum wire. In this paper we present a general theoretical technique to describe wave propagation through a curved wire of uniform cross-section and lying in a plane, but of otherwise arbitrary shape. The method consists of (i) introducing a local orthogonal coordinate system, the arclength and two locally perpendicular coordinate axes, dictated by the shape of the wire; (ii) rewriting the wave equation of interest in this system; (iii) identifying an effective scattering potential caused by the local curvature; and (iv), solving the associated Lippmann-Schwinger equation for the scattering matrix. We carry out this procedure in detail for the scalar Helmholtz equation with both hard-wall and stress-free boundary conditions, appropriate for the mesoscopic transport of electrons and (scalar) phonons. A novel aspect of the phonon case is that the reflection probability always vanishes in the long-wavelength limit, allowing a simple perturbative (Born approximation) treatment at low energies. Our results show that, in contrast to charge transport, curvature only barely suppresses thermal transport, even for sharply bent wires, at least within the two-dimensional scalar phonon model considered. Applications to experiments are also discussed.Comment: 9 pages, 11 figures, RevTe

    Low-temperature heat transfer in nanowires

    Full text link
    The new regime of low-temperature heat transfer in suspended nanowires is predicted. It takes place when (i) only ``acoustic'' phonon modes of the wire are thermally populated and (ii) phonons are subject to the effective elastic scattering. Qualitatively, the main peculiarities of heat transfer originate due to appearance of the flexural modes with high density of states in the wire phonon spectrum. They give rise to the T1/2T^{1/2} temperature dependence of the wire thermal conductance. The experimental situations where the new regime is likely to be detected are discussed.Comment: RevTex file, 1 PS figur

    Electron transport in the dye sensitized nanocrystalline cell

    Full text link
    Dye sensitised nanocrystalline solar cells (Gr\"{a}tzel cells) have achieved solar-to-electrical energy conversion efficiencies of 12% in diffuse daylight. The cell is based on a thin film of dye-sensitised nanocrystalline TiO2_2 interpenetrated by a redox electrolyte. The high surface area of the TiO2_2 and the spectral characteristics of the dye allow the device to harvest 46% of the solar energy flux. One of the puzzling features of dye-sensitised nano-crystalline solar cells is the slow electron transport in the titanium dioxide phase. The available experimental evidence as well as theoretical considerations suggest that the driving force for electron collection at the substrate contact arises primarily from the concentration gradient, ie the contribution of drift is negligible. The transport of electrons has been characterised by small amplitude pulse or intensity modulated illumination. Here, we show how the transport of electrons in the Gr\"{a}tzel cell can be described quantitatively using trap distributions obtained from a novel charge extraction method with a one-dimensional model based on solving the continuity equation for the electron density. For the first time in such a model, a back reaction with the I3_3^- ions in the electrolyte that is second order in the electron density has been included.Comment: 6 pages, 5 figures, invited talk at the workshop 'Nanostructures in Photovoltaics' to appear in Physica

    A Hartree-Fock study of charge redistribution in a two-dimensional mesoscopic structure

    Get PDF
    Abstract In this letter, we investigate the ground state of two-dimensional disordered cylinders which contain spinless, interacting electrons using the HartreeFock approximation. Calculations of the deviation of the polarization from uniformity reveal a tendency of the charge to rearrange towards the ends of the system. The presence of disorder results in fluctuations of the deviation around its mean value, which are more pronounced when the disorder strength is of the order of the interaction between the electrons. The existence of persistent currents in normal mesoscopic rings threaded by a magnetic flux In the present letter, we study the ground state of two-dimensional cylinders which contain spinless, interacting electrons via Coulomb interactions, by solving self-consistently the Hartree-Fock equation. The validity of the method has already been established The system under investigation is a two-dimensional cylinder, formed by a tight-binding lattice with M sites in the longitudinal direction (x) and L sites in the transverse direction (y). We take periodic boundary conditions along the longitudinal direction and free boundar

    Phonon-mediated thermal conductance of mesoscopic wires with rough edges

    Full text link
    We present an analysis of acoustic phonon propagation through long, free-standing, insulating wires with rough surfaces. Due to a crossover from ballistic propagation of the lowest-frequency phonon mode at ω<ω1=πc/W\omega <\omega _{1}=\pi c/W to a diffusive (or even localized) behavior upon the increase of phonon frequency, followed by re-entrance into the quasi-ballistic regime, the heat conductance of a wire acquires an intermediate tendency to saturate within the temperature range Tω1/kBT\sim \hbar \omega_{1}/k_{B}.Comment: 4 pages, 3 figures included; minor changes and corrections, figures 1 and 2 replaced by better versions; to appear in PRB Brief Report
    corecore