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In this work, we have investigated the influence of power-law roughness on the ballistic thermal conduc-
tanceKTH for a nanosized beam adiabatically connected between two heat reservoirs. The sideways wall beam
roughness is assumed to be power-law type, which is described by the roughness amplitudew, the in-plane
roughness correlation lengthj and the roughness exponent 0øHø1. Distinct differences occur in between
power-law and Gaussian wall roughness. For power-law roughness with low roughness exponentsH s,0.5d,
the influence of phonon scattering can be rather destructive leading to significant deviations from the universal
conductance value for flat beam walls. On the other hand for large roughness exponentssH.0.5d the conduc-
tance drop is significantly smaller than that of Gaussian roughness assuming similar roughness ratiosw/j.
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Besides one-dimensional electron transport1–3 that is un-
derstood within the framework of Büttiker-Landauer
theory,4,5 one-dimensional phonon transport should also be
possible. However, despite the long-standing theoretical in-
terest in this topic,6 the question whether the phonon thermal
conductance should be quantized in one dimension was only
recently addressed theoretically and experimentally.7,8 In-
deed, using the Landauer formulation of transport theory, it
was predicted that dielectric quantum wires should exhibit
quantized thermal conductance at low temperatures in a bal-
listic phonon regime. The quantum of thermal conductance is
universal(independent of material characteristics) and equal
to KB

2T/3h, where KB is the Boltzmann constant,h is
Planck’s constant, andT is the temperature.

In the theory that describes the thermal conductanceKTH
(Ref. 7) the only material and geometry dependence arises
through the long wavelength cutoff frequencies of the elastic
waves in the beam. As the temperature decreasesT and ap-
proaching 0 K, the conductance is dominated by the lowest
few modes with zero cutoff frequency. Indeed,KTH ap-
proaches the universal valueKU=N0KB

2T/3h with N0 the
number of modes with zero cutoff frequency at long wave-
lengths(N0=4 for a freestanding beam).8 Recently, Schwab
et al. successfully measured the universal conductanceKU
in a suspended silicon nitride bridge.8 Their experiment
shows a universal conductanceKTH=KU at temperatures
T,0.08 K, while for higher temperaturesT.1 K the con-
ductanceKTH increases aboveKU, as the modes with nonzero
cutoff frequencies become excited and contribute to the
heat transport. However, at intermediate temperatures
0.1 K,T,1 K the thermal conductance is decreased below
its universal value as it was shown experimentally by
Schwabet al.,8 and it was earlier predicted theoretically by
Kambili et al.9

The reduction of KTH below the predicted universal
value was explained in terms of the scattering of thermal
phonons by beam wall surface roughness using a scalar
model for the elastic waves.10 This analysis showed that the
thermal conductanceKTH depends on the roughness ampli-
tude w and the correlation lengthj, since the analysis was

performed in terms of a Gaussian correlation functionCsxd
=w2expf−sx/jd2g.9 Values ofw equal to 22% andj equal to
about 75% of the width of the conduction pathway gave a
good fit to the data of Ref. 8.10 Although the fits in terms of
a Gaussian correlation function are good, it is not clear if a
power-law roughness can give similar results and what are
their possible implications onKTH. This will be the topic in
the present paper. Note also that, the Gaussian correlation
function can be considered as a subcase of the stretched ex-
ponential correlation functionCsxd=w2expf−sx/jd2Hg for
roughness exponentH=1,11 while for power-law roughness
we have 0,H,1.11–13

Furthermore, the expression for the thermal conductance
KTH of a suspended mesoscopic beam connecting two ther-
mal reservoirs is given by10

KTH =
"2

KBT2o
m

1

2p
E

vm

` v2eb"v

seb"v − 1d2Tmsvddv, s1d

wherevm is the cutoff frequency of them-propagating mode
in the suspended beam, andTmsvd is the transmission
coefficient.10 It is assumed here that the thermal transmission
occurs along thex-axis with one-dimensional sideways
rough boundaries defined perpendicular to they-axis. If we
denote byy=zsxd the sideways roughness fluctuations of the
wire (assumed uncorrelated and the same for both sideways

walls), L the length, andW̃ the width of the suspended beam,
the transmission coefficient is given by10

Tm = e−gmL, gm = o
n

sq2 + qnqmd2

qnqm

Nn
2Nm

2

2
kuzsqdu2l, s2d

where kuzsqdu2l is the Fourier transform of the roughness
(auto-) correlation functionCsxd=kzsxdzs0dl. We have q
=v /c with c the velocity of sound andv the propagating

frequency, andqm=Îq2−vm
2 with vm=mp /W̃. Note that

Nn=Î2/W̃ if n.0, andNn=Î1/W̃ if n=0.10
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For self-affine rough boundaries the correlation function
Csxd has the scaling behaviorCsxd<w2−rrms

2 x2H if x!j,
andCsxd=0 if x@j (Refs. 11 and 12) with rrms

2 <w2/j2H a
constant.j is the in-plane roughness correlation length,w
=kzsxd2l1/2 the saturated rms roughness amplitude, and
H s0,H,1d the roughness exponent which characterize the
degree of surface irregularity at small length scalessx!jd so
that the smaller theH the more jagged the roughness profile
becomes.11,12 In this case,kuzsqdu2l has the scaling behavior
kuzsqdu2l~k−1−2H if qj@1 and kuzsqdu2l~const if qj!1.
This is described by the simple analytic model13,14

kuzsqdu2l =
w2j

s1 + auqujd1+2H s3d

with a=s1/Hdf1−s1+aQcjd−2Hg if 0 ,H,1, anda=2 lns1
+aQcjd if H=0.13 Qc=p /a0 with a0 of the order of the
atomic spacing. For other roughness models see Refs. 10–12.

Our calculations were performed for sound velocityc
=8250 m/s, a0=0.3 nm, suspended beam lengthL
=1000 nm [assumingL@j in order to exclude any other
finite size dependence of the thermal conductance on the
beam lengthL besides that of the exponential dependence of
the transmission coefficient from Eq.(2)], and beam width

W̃=167 nm, which were also used in Ref. 9. Figure 1 shows
a comparison of the power-law roughness spectrumkuzsqdu2l
from Eq. (3) with that of the Gaussian roughness or

kuzsqdu2l = w2jÎp exps− q2j2/4d. s4d

From Fig. 1 it can be clearly observed that the Gaussian
roughness spectrumkuzsqdu2l decays much faster than that of
the power-law roughness spectrum for the same roughness
parametersw, j and roughness exponentsH=1. This differ-
ence implies strong differences for the corresponding ther-
mal conductance between Gaussian and power-law rough-
ness.

Figure 2 shows comparison of the thermal conductance
for power-law and Gaussian roughness using the limiting
valueH=1 in Eq. (3). The calculations were performed for
simplicity the case of the zero modesm=0d contribution. The
backscattering amplitude from the lowest mode(mode m
=0) is given by the simple formula

g0 =
2

W̃2

v2

c2

w2j

s1 + afvj/cgd1+2H . s5d

Note that the backscattering amplitudeg0 has a maximum
s]g0/]v=0d at a frequencyv<saj /cds1+2Hd sincesaj /cd
!1. Indeed, at low enough temperatures only the lowest
mode sm=0d contributes to the thermal conductance, and
only the backscattering of this mode reduces the conductance
KTH below the universal valueKU as is shown in Fig. 2. It
can also be clearly seen that for Gaussian roughness the
minimum is deeper and therefore larger the reduction of the
thermal conductance from the universal valueKU (due to
phonon scattering by wall roughness) from the case of
power-law roughness even for exponentsH=1. For both
types of roughness we used the valuesw=35 nm andj
=120 nm from Ref. 10. These values were also used to fit the

experimental data from Ref. 8 in terms of Gaussian rough-
ness in Ref. 10. At any rate, the faster decay of the Gaussian
roughness spectrum from that of power law roughness, as it
is shown in Fig. 1, minimizes the effect of large wave vectors

FIG. 1. (a) Calculations ofkuzsqdu2l for Gaussian and power-law
roughness,j=120 nm, and various roughness exponentsH. (b) Cal-
culations ofkuzsqdu2l for power-law and Gaussian(inset) roughness
for H=0.9 and various correlation lengthsj.

FIG. 2. Calculations ofKTH vs temperatureT for w=35 nm,
m=0, andj=120 nm. Comparison of power-law and Gaussian cor-
relation function forH=1.
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q on the transmission coefficientTm from Eq.(2) and thus on
the thermal conductance leading to a deeper minimum(or
larger decrease) than that of power-law roughness.

In order to achieve comparable minimum depth for
power-law roughness with that of Gaussian roughness, sig-
nificantly large ratiosw/j have to be assumed of the order of
w/j,1 [see Fig. 3(a)]. This is rather unphysical since the
validity of the present formalism, which is first order pertur-
bation theory, breaks down in the limit of strong roughness
and roughness fluctuations comparable to beam width. The
influence of the roughness amplitudew is rather significant
since from Eq.(5) we havegm,w2 (since kuzsqdu2l,w2)

leading to transmission coefficient dependenceTm,e−w2
. In

comparison with the case of Gaussian roughness[Fig. 3(b)],
the influence of the rms roughness amplitude on the thermal
capacitance shows distinct differences for the case of power-
law roughness over the whole range of system temperatures
as Fig. 3(a) shows in comparison with Fig. 3(b). Similar is
also the behavior ofKTH as a function of the roughness cor-
relation length as Fig. 4 shows. In both cases with increasing
roughness ratiow/j the minimum position shifts to higher
temperatures. The differences between Gaussian and power-

law roughness are due to the different form of the roughness
spectrakuzsqdu2l as quantitatively shown in Fig. 1 with dis-
tinct decay rates at larger wave vectorsq.

We should point out that besides the limiting condition

w!W̃, the limit of strong or weak roughness is determined
by the fact that the average local slope

rrms=Îku¹zu2l =ÎE
2p/L

Qc

kuzsqdu2lq2dq s6d

to be small orrrms!1. The latter depends predominantly on
the roughness exponentH than the roughness ratiow/j.15

Notably, the changes with decreasing roughness exponentH
occur around the temperatureT~0.2 K, where the minimum
is also observed for large roughness exponentsH s.0.5d. For
temperatures below the temperature where the minimum oc-
curs the effect of the roughness exponentH is rather weak.

At any rate, with decreasing roughness exponentH the
minimum of the thermal conductance ceases to exist(Fig. 5),
while a continuous decrement with increasing temperatureT
takes place. This is because there are more favorable condi-
tions for backscattering leading to lower thermal conduc-

FIG. 3. (a) Calculations ofKTH for power-law roughness vs
temperatureT for m=0, j=120 nm,H=0.9, and various roughness
amplitudesw. (b) Similar calculations but for Gaussian roughness
for m=0, j=120 nm, and various roughness amplitudesw.

FIG. 4. Calculations ofKTH vs temperatureT for w=35 nm,
m=0, H=0.9, and various roughness correlation lengthsj.

FIG. 5. Calculations ofKTH vs temperatureT for w=35 nm,
m=0, j=120 nm, and various roughness exponentsH.
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tance. This behavior is related with the fact that the rough-
ness spectrum decays slower[Fig. 1(a)] leading to significant
contributions from long wavelengthsq or equivalently higher
frequenciessq=v /cd in Eqs.(1) and(2). By contrast the fast
decaying Gaussian spectrum only allows a limited range of
frequencies to contribute to the decrease of the thermal con-
ductance below its ideal value. Additional modes will have
similar effect on the thermal conductance since it is the high
frequency range that becomes more significant with decreas-
ing roughness exponentH or slower decaying roughness
spectrum.

The sub-Kelvin temperature studiessT,1 Kd on phonon
scattering by wall roughness can be useful in space research
that is related to programs(e.g., Constellation-X and XEUS:
X-ray Evolving Universe Spectroscopy Mission) which re-
quire detectors with challenging specifications.16 The most
promising type of detector is an array of voltage biased su-
perconducting transition edge microcalorimeters operated at
sub-Kelvin temperatures.16 Uniformity of response of arrays
of these microcalorimeters is critically dependent on the ther-
mal properties of the materials used. Therefore, it is essential
to study the thermal properties of these materials at very low

temperatures(sub-Kelvin temperatures), where the heat con-
ductivity becomes size dependent(through the mean free
path of phonons) and phonon scattering by surface roughness
plays a fundamental role.

In conclusion, we have compared power-law and Gauss-
ian roughness effects on the thermal conductance of a sus-
pended beam between two reservoirs. Distinct differences
occur in between these types of roughness. Indeed, for
power-law roughness with low roughness exponentsH
s,0.5d, the influence of phonon scattering can be rather de-
structive leading to significant deviations from the universal
conductance value for flat beam walls. On the other hand for
large roughness exponentssH.0.5d the conductance drop is
significantly smaller than that of Gaussian roughness assum-
ing similar roughness ratiosw/j (indicating weaker phonon
scattering). Further studies are necessary to account more
correctly for the case of strong roughness or(or rrmsù1)
accompanied with precise roughness characterization of
beam wall roughness.
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