2,538 research outputs found

    Radiation from a Josephson STAR-emitter

    Full text link
    We calculate the angular dependence of the radiation-zone output power and electric polarization of stimulated terahertz amplified radiation (STAR) emitted from a dcdc voltage applied across cylindrical and rectangular stacks of intrinsic Josephson junctions. During coherent emission, a spatially uniform acac Josephson current density in the stack acts as a surface electric current density antenna source, leading to an harmonic radiation frequency spectrum, as in experiment, but absent in all cavity modesl of cylindrical mesas. Spatial fluctuations of the acac Josephson current cause its fundamental mode to lock onto the lowest finite energy cylindrical cavity mode, causing it to resonate, leading to a non-uniform magnetic surface current density radiation source, and a non-trivial combined fundamental frequency output power with linear polarization We also present a model of the superconducting substrate, and present results for rectangular mesas.Comment: 18 pages, 26 figures, submitted to PR

    Dimensional Crossover in Heavy Fermions

    Full text link
    Recently we have shown that a one-parameter scaling, the Coherence Temperature, describes the physical behavior of several heavy fermions in a region of their phase diagram. In this paper we fully characterize this region, obtaining the uniform susceptibility, the resistivity and the specific heat. This allows for an explicit evaluation of the Wilson and the Kadowaki-Woods ratios in this regime. These quantities turn out to be independent of the distance to the critical point. The theory of the one-parameter scaling corresponds to a zero dimensional approach. Although spatial correlations are irrelevant in this case, time fluctuations are critically correlated and the quantum hyperscaling relation is satisfied for d=0d=0. The crossover from d=0d=0 to d=3d=3 is smooth. It occurs at a lenght scale which is inversely related to the stiffness of the lifetime of the spin fluctuations.Comment: 4 pages, revtex, no figures, submitted to Physical Review

    The risk of rabies spread in Japan: a mathematical modeling assessment

    Get PDF
    Rabies was eliminated from Japan in 1957. In the 60 years since elimination, vaccination coverage has declined and dog ownership habits have changed. The purpose of this study was to assess the current risk of rabies spread in Japan. A spatially explicit transmission model was developed at the 1 km2 grid scale for Hokkaido and Ibaraki Prefectures. Parameters associated with dog movement and bite injuries were estimated using historical records from Japan, and were used with previously published epidemiological parameters. The final epidemic size, efficacy of rabies contingency plans and the influence of dog owner responses to incursions were assessed by the model. Average outbreak sizes for dog rabies were 3.1 and 4.7 dogs in Hokkaido and Ibaraki Prefectures, respectively. Average number of bite injury cases were 4.4 and 6.7 persons in Hokkaido and Ibaraki Prefectures, respectively. Discontinuation of mandatory vaccination increased outbreak sizes in these prefectures. Sensitivity analyses showed that higher chance of unintentional release of rabid dogs by their owners (from 0.5 to 0.9 probability) increased outbreak size twofolds. Our model outputs suggested that at present, incursions of rabies into Japan are very unlikely to cause large outbreaks. Critically, the reaction of dog owners to their dogs developing rabies considerably impacts the course of outbreaks. Contingency measures should therefore include sensitisation of dog owners

    Accelerated Sampling of Boltzmann distributions

    Full text link
    The sampling of Boltzmann distributions by stochastic Markov processes, can be strongly limited by the crossing time of high (free) energy barriers. As a result, the system may stay trapped in metastable states, and the relaxation time to the equilibrium Boltzmann distribution may be very large compared to the available computational time. In this paper, we show how, by a simple modification of the Hamiltonian, one can dramatically decrease the relaxation time of the system, while retaining the same equilibrium distribution. The method is illustrated on the case of the one-dimensional double-well potential

    Fluctuating pancake vortices revealed by dissipation of Josephson vortex lattice

    Get PDF
    In strongly anisotropic layered superconductors in tilted magnetic fields the Josephson vortex lattice coexists with the lattice of pancake vortices. Due to the interaction between them, the dissipation of the Josephson-vortex lattice occurs to be very sensitive to the presence of the pancake vortices. If the c-axis magnetic field is smaller then the corresponding lower critical field, the pancake stacks are not formed but the individual pancakes may exist in the fluctuational regime either near surface in large-size samples or in the central region for small-size mesas. We calculate the contribution of such fluctuating pancake vortices to the c-axis conductivity of the Josephson vortex lattice and compare the theoretical results with measurements on small mesas fabricated out of Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals. A fingerprint of fluctuating pancakes is characteristic exponential dependence of the c-axis conductivity observed experimentally. Our results provide strong evidence of the existence of the fluctuating pancakes and their influence on the Josephson-vortex-lattice dissipation.Comment: 12 pages, 8 figures, Subm. Phys. Rev.

    Local SiC photoluminescence evidence of non-mutualistic hot spot formation and sub-THz coherent emission from a rectangular Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} mesa

    Get PDF
    From the photoluminescence of SiC microcrystals uniformly covering a rectangular mesa of the high transition temperature TcT_c superconductor Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta}, the local surface temperature T(r)T({\bm r}) was directly measured during simultaneous sub-THz emission from the N103N\sim10^3 intrinsic Josephson junctions (IJJs) in the mesa. At high bias currents II and low bath temperatures Tbath 35T_{\rm bath}\lesssim~35 K, the center of a large elliptical hot spot with T(r)>TcT({\bm r})> T_c jumps dramatically with little current-voltage characteristic changes. The hot spot doesn't alter the ubiquitous primary and secondary emission conditions: the ac Josephson relation and the electromagnetic cavity resonance excitation, respectively. Since the intense sub-THz emission was observed for high Tbath 50T_{\rm bath}\gtrsim~50 K in the low II bias regime where hot spots are absent, hot spots can not provide the primary mechanisms for increasing the output power, the tunability, or for promoting the synchronization of the NN IJJs for the sub-THz emission, but can at best coexist non-mutualistically with the emission. No T(r)T({\bm r}) standing waves were observed

    High Q Cavity Induced Fluxon Bunching in Inductively Coupled Josephson Junctions

    Get PDF
    We consider fluxon dynamics in a stack of inductively coupled long Josephson junctions connected capacitively to a common resonant cavity at one of the boundaries. We study, through theoretical and numerical analysis, the possibility for the cavity to induce a transition from the energetically favored state of spatially separated shuttling fluxons in the different junctions to a high velocity, high energy state of identical fluxon modes.Comment: 8 pages, 5 figure

    Quantum Phase Transition in the Itinerant Antiferromagnet (V0.9Ti0.1)2O3

    Full text link
    Quantum-critical behavior of the itinerant electron antiferromagnet (V0.9Ti0.1)2O3 has been studied by single-crystal neutron scattering. By directly observing antiferromagnetic spin fluctuations in the paramagnetic phase, we have shown that the characteristic energy depends on temperature as c_1 + c_2 T^{3/2}, where c_1 and c_2 are constants. This T^{3/2} dependence demonstrates that the present strongly correlated d-electron antiferromagnet clearly shows the criticality of the spin-density-wave quantum phase transition in three space dimensions.Comment: 4 pages, 4 figure

    Evidence for pairing above Tc from the dispersion in the pseudogap phase of cuprates

    Get PDF
    In the underdoped high temperature superconductors, instead of a complete Fermi surface above Tc, only disconnected Fermi arcs appear, separated by regions that still exhibit an energy gap. We show that in this pseudogap phase, the energy-momentum relation of electronic excitations near E_F behaves like the dispersion of a normal metal on the Fermi arcs, but like that of a superconductor in the gapped regions. We argue that this dichotomy in the dispersion is hard to reconcile with a competing order parameter, but is consistent with pairing without condensation
    corecore