21,771 research outputs found
Combined production of broilers and fruits
Combined production of broilers and fruit trees is a subject often discussed in organic fruit
production in Denmark. Very little research has been carried out on this type of production
system. In organic production in Denmark, nearly no pesticides are allowed, so the need
for alternative pest control is large. Apple sawfly (Hoplocampa testudinea) and pear midge
(Contarinia pyrivora) cause big crop losses in apples and pears respectively, in unsprayed
organic fruit production. Both insects infest fruitlets and cause these to drop prematurely
after which the pests pupate in the topsoil. In the present experiment a research orchard
with the varieties ‘Discovery’ and ‘Conference’ were used as outdoor area for broilers to
minimise the population of sawflies and pear midges, and to reduce the need for weeding
and manuring. The trees were kept unsprayed. Fruit yield and fruit quality were assessed
at harvest. White sticky traps were placed in the test area in order to measure the
occurrence of sawfly over time. The infestation of pear midge was investigated counting
the infested fruitlets in clusters on trees at the centre of the plots. The catch of apple
sawflies was reduced in the combined apple and broiler production, but no significant
effect on the yield or the fruit quality was seen. Experiences from on-farm research show
that combining fruit and egg-production is one way to reduce the problem with apple
sawfly, but poultry alone is not a sufficient way of controlling sawflies. The welfare and
health of the broilers were excellent under fruit trees
An isolated epizootic of hemorrhagic-like fever in cats caused by a novel and highly virulent strain of feline calicivirus.
An isolated epizootic of a highly fatal feline calicivirus (FCV) infection, manifested in its severest form by a systemic hemorrhagic-like fever, occurred over a 1-month period among six cats owned by two different employees and a client of a private veterinary practice. The infection may have started with an unowned shelter kitten that was hospitalized during this same period for a severe atypical upper respiratory infection. The causative agent was isolated from blood and nasal swabs from two cats; the electron microscopic appearance was typical for FCV and capsid gene sequencing showed it to be genetically similar to other less pathogenic field strains. An identical disease syndrome was recreated in laboratory cats through oral inoculation with tissue culture grown virus. During the course of transmission studies in experimental cats, the agent was inadvertently spread by caretakers to an adjoining room containing a group of four normal adult cats. One of the four older cats was found dead and a second was moribund within 48-72h in spite of symptomatic treatment; lesions in these animals were similar to those of the field cats but with the added feature of severe pancreatitis. The mortality in field cats, deliberately infected laboratory cats, and inadvertently infected laboratory cats ranged from 33-50%. This new isolate of calicivirus, named FCV-Ari, was neutralized at negligible to low titer by antiserum against the universal FCV-F9 vaccine strain. Cats orally immunized with FCV-F9, and then challenge-exposed shortly thereafter with FCV-Ari, developed a milder self-limiting form of disease, indicating partial protection. However, all of the field cats, including the three that died, had been previously immunized with parenteral FCV-F9 vaccine. FCV-Ari caused a disease that was reminiscent of Rabbit Hemorrhagic Disease, a highly fatal calicivirus infection of older rabbits
A library of ab initio Raman spectra for automated identification of 2D materials
Raman spectroscopy is frequently used to identify composition, structure and
layer thickness of 2D materials. Here, we describe an efficient
first-principles workflow for calculating resonant first-order Raman spectra of
solids within third-order perturbation theory employing a localized atomic
orbital basis set. The method is used to obtain the Raman spectra of 733
different monolayers selected from the computational 2D materials database
(C2DB). We benchmark the computational scheme against available experimental
data for 15 known monolayers. Furthermore, we propose an automatic procedure
for identifying a material based on an input experimental Raman spectrum and
illustrate it for the cases of MoS (H-phase) and WTe
(T-phase). The Raman spectra of all materials at different excitation
frequencies and polarization configurations are freely available from the C2DB.
Our comprehensive and easily accessible library of \textit{ab initio} Raman
spectra should be valuable for both theoreticians and experimentalists in the
field of 2D materialsComment: 17 pages, 7 figure
Error correction in ensemble registers for quantum repeaters and quantum computers
We propose to use a collective excitation blockade mechanism to identify
errors that occur due to disturbances of single atoms in ensemble quantum
registers where qubits are stored in the collective population of different
internal atomic states. A simple error correction procedure and a simple
decoherence-free encoding of ensemble qubits in the hyperfine states of alkali
atoms are presented.Comment: 4 pages, 2 figure
DFT study of graphene antidot lattices: The roles of geometry relaxation and spin
Graphene sheets with regular perforations, dubbed as antidot lattices, have
theoretically been predicted to have a number of interesting properties. Their
recent experimental realization with lattice constants below 100 nanometers
stresses the urgency of a thorough understanding of their electronic
properties. In this work we perform calculations of the band structure for
various hydrogen-passivated hole geometries using both spin-polarized density
functional theory (DFT) and DFT based tight-binding (DFTB) and address the
importance of relaxation of the structures using either method or a combination
thereof. We find from DFT that all structures investigated have band gaps
ranging from 0.2 eV to 1.5 eV. Band gap sizes and general trends are well
captured by DFTB with band gaps agreeing within about 0.2 eV even for very
small structures. A combination of the two methods is found to offer a good
trade-off between computational cost and accuracy. Both methods predict
non-degenerate midgap states for certain antidot hole symmetries. The inclusion
of spin results in a spin-splitting of these states as well as magnetic moments
obeying the Lieb theorem. The local spin texture of both magnetic and
non-magnetic symmetries is addressed
Bose Einstein condensation on inhomogeneous amenable graphs
We investigate the Bose-Einstein Condensation on nonhomogeneous amenable
networks for the model describing arrays of Josephson junctions. The resulting
topological model, whose Hamiltonian is the pure hopping one given by the
opposite of the adjacency operator, has also a mathematical interest in itself.
We show that for the nonhomogeneous networks like the comb graphs, particles
condensate in momentum and configuration space as well. In this case different
properties of the network, of geometric and probabilistic nature, such as the
volume growth, the shape of the ground state, and the transience, all play a
role in the condensation phenomena. The situation is quite different for
homogeneous networks where just one of these parameters, e.g. the volume
growth, is enough to determine the appearance of the condensation.Comment: 43 pages, 12 figures, final versio
Canted antiferromagnetism in phase-pure CuMnSb
We report the low-temperature properties of phase-pure single crystals of the
half-Heusler compound CuMnSb grown by means of optical float-zoning. The
magnetization, specific heat, electrical resistivity, and Hall effect of our
single crystals exhibit an antiferromagnetic transition at and a second anomaly at a temperature . Powder and single-crystal neutron diffraction establish an
ordered magnetic moment of ,
consistent with the effective moment inferred from the Curie-Weiss dependence
of the susceptibility. Below , the Mn sublattice displays
commensurate type-II antiferromagnetic order with propagation vectors and
magnetic moments along (magnetic space group ).
Surprisingly, below , the moments tilt away from by
a finite angle , forming a canted antiferromagnetic
structure without uniform magnetization consistent with magnetic space group
. Our results establish that type-II antiferromagnetism is not the
zero-temperature magnetic ground state of CuMnSb as may be expected of the
face-centered cubic Mn sublattice.Comment: 14 pages, 15 figure
Einstein-Weyl structures and Bianchi metrics
We analyse in a systematic way the (non-)compact four dimensional
Einstein-Weyl spaces equipped with a Bianchi metric. We show that Einstein-Weyl
structures with a Class A Bianchi metric have a conformal scalar curvature of
constant sign on the manifold. Moreover, we prove that most of them are
conformally Einstein or conformally K\"ahler ; in the non-exact Einstein-Weyl
case with a Bianchi metric of the type or , we show that the
distance may be taken in a diagonal form and we obtain its explicit
4-parameters expression. This extends our previous analysis, limited to the
diagonal, K\"ahler Bianchi case.Comment: Latex file, 12 pages, a minor modification, accepted for publication
in Class. Quant. Gra
- …